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Theory of Interlayer Tunneling in Bilayer Quantum Hall Ferromagnets
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Spielman et al. [Phys. Rev. Lett. 84, 5808 (2000] recently observed a large and sharp Josephson-like
zero-bias peak in the tunnel conductance of a bilayer system in a quantum Hall ferromagnet state. We
argue that disorder-induced topological defects in the pseudospin order parameter limit the peak size
and destroy the predicted Josephson effect. We predict that the peak would be split and shifted by an
in-plane magnetic field in a way that maps the dispersion relation of the ferromagnet’s Goldstone mode.
We also predict resonant structures in the dc I-V characteristic under bias by an ac electric field.
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Exotic effects induced by interlayer Coulomb interac-
tions have made strongly coupled bilayer quantum Hall
systems at the total Landau level filling factor n � 1 the
subject of numerous theoretical and experimental studies
[1–8]. When the layers are widely separated they be-
have as two weakly coupled n � 1�2 “composite fermion”
metals. In this regime interlayer tunneling is strongly sup-
pressed at low-bias voltages by an orthogonality catastro-
phe associated with the very slow relaxation of charge in
each layer [9]. Recently, however, Spielman et al. [10] ob-
served a strong and sharp peak in the differential conduc-
tance near zero bias for layer separations below a critical
value. As we explain below, this dramatic change is asso-
ciated with the formation of a broken symmetry state with
spontaneous interlayer phase coherence and strong inter-
layer correlations.

In the broken symmetry state, the electrons lower their
interlayer exchange energy by going into a state with un-
certain layer index (i.e., a coherent superposition with
equal probability but fixed relative phase to be found in
either layer) [1,5]. Hence it is possible to tunnel an elec-
tron between the layers and still leave the system in or near
its ground state (much as in the Josephson effect). The
orthogonality catastrophe is averted and strong tunneling
can occur near zero voltage because the electrons in the
destination layer were already avoiding the tunneling elec-
tron before it arrived. This is the microscopic physics un-
derlying the charge-e Josephson effect predicted by Wen
and Zee and by Ezawa and Iwazaki [4]. The broken sym-
metry state may be described as a condensate of Chern-
Simons bosons [4], as an easy-plane ferromagnet [1,3,5]
of pseudospins representing the layer index, or as a super-
fluid excitonic condensate [11]. We use the pseudospin
language below.

In contrast to the true Josephson effect, however, no
zero-bias supercurrent (infinite tunneling conductance)
was observed. The peak conductance, though enormously
enhanced, did not exceed 1022e2�h. In this Letter we ex-
plain how density inhomogeneities introduce topological
defects (merons) into the SU(2) pseudospin order parame-
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ter. These defects carry both charge and vorticity [1] and
constitute a dissipative environment which turns the
Josephson effect into a finite tunneling peak whose height
and width is a measure of the dynamics of the topological
defects. We predict dependences of the tunneling current
on in-plane magnetic field strength Bjj, bias-voltage fre-
quency, and on the homogeneity of the 2D layers. In par-
ticular, we show that a measurement of I�V ,Bjj� would test
the main premise of our theory, the existence of one low-
energy Goldstone mode, and would map its dispersion
relation. Finally, we analyze the current distribution for a
perfectly homogeneous sample.

The order parameter field of the quantum Hall
ferromagnet is a pseudospin unit vector �m. When fluctua-
tions out of the easy plane are small, it can be parame-
trized by an angle w and the conjugate “charge” mz : �m �
�cosw, sinw,mz�. In the absence of tunneling, disorder
and topological defects, the long-wavelength Hamiltonian
density of the n � 1 bilayer state is [1,5,6]

H �
1
2

rs�=w�2 1
�en0mz�2�2

2G
, (1)

where n0 �
1

2p�2 is the average density. In Hartree-Fock
theory, rs � 0.4 K and the capacitance G is increased
from its electrostatic value [1,5]. Since the momentum
density conjugate to w is pw � h̄n0mz�2, the Hamilton-
ian (1) has a single linearly dispersing collective mode
with velocity u �

p
rs�G. This Goldstone mode signals

superfluidity for in-plane currents which are antisymmetric
in the layer index [1,4]. Taking proper account of the sig-
nificant exchange enhancement of G yields u � 0.1e2�h̄e.
Equation (1) is valid only in the limit q ! 0. For larger
q the collective mode frequency vq exhibits a roton mini-
mum [2,3]. It is this dispersion curve that may be extracted
from a measurement of I�V ,Bjj�.

The interlayer tunneling operators are

T6 � 2
Z
d2r l��r�e6iw��r�e6iQBx , (2)
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where the 6 sign refers to the direction of tunneling,QB �
edBk

h̄c is a characteristic wave vector introduced [1] by the
magnetic field Bjj (we choose the gauge �Ak � xBkẑ). The
quantity l �

1
8p�2 DSAS is proportional to the tunneling

amplitude and may vary with position due to disorder in
the tunnel barrier. Here we do not discuss this source of
disorder since, on its own, it cannot destroy the Josephson
effect. As in a Josephson junction, the tunneling term in
the Hamiltonian is T1 1 T2, while the tunneling current
operator is ie�T1 2 T2��h̄. The striking similarity of the
expressions above to their counterparts in superconducting
Josephson junctions make it clear that a calculation of the
tunneling conductance under Eqs. (1) and (2) leads to a
Josephson effect, in contrast to the experiment. We now
explain the way that disorder destroys the Josephson effect
in the present system.

In the n � 1 bilayer system, a deviation of the total den-
sity from n � 1 introduces topological defects (merons)
into the order parameter vector �m. In terms of bosonic
Chern-Simons theory, this statement is a consequence of
the residual magnetic field left, away from n � 1, after
the external and Hartree-Chern-Simons magnetic fields
almost cancel each other. This residual field introduces
vortices into the bosonic order parameters of the two
layers. In the language of a quantum Hall ferromagnet,
this observation is a consequence [1,6] of the coupling of
the symmetric density to the order parameter �m. The sym-
metric part of the density is constrained to satisfy n��r� 2

n0 �
1

8p eabemnkmm≠amn≠bmk � = ? �mz

8p ẑ 3 =w� 2
mz

8p = 3 =w. The deviation from n0 is then composed
of a charge density carried by an electric dipole field,
mz

8p ẑ 3 =w, and by a charge density attached to topologi-
cal defects in �m. The latter are merons of four types, car-
rying a charge of 6

e
2 , and characterized by their vorticity

(the sign of = 3 =w at the core) and the layer in which
their charge resides (mz at the core). Merons interact
Coulombically due to their charge, and by a logarithmic
interaction due to their vorticity. Below the Kosterlitz-
Thouless (KT) temperature TKT � rs, merons are bound
in pairs of opposite vorticity to avoid the logarithmically
diverging energy penalty.

In realistic samples there are long-range density fluc-
tuations whose relative magnitude is estimated [12] to
be 4%. Thus, the typical distance between the disorder-
induced meron pairs is �12�. The separation between
the two merons that constitute a pair is estimated to be
�6� [1], comparable to the spacing among different pairs.
This estimate is obtained by balancing the Coulomb repul-
sion and logarithmic attraction. Thus, the n � 1 bilayer
sample studied in Ref. [10] is analogous to a supercon-
ducting junction with random magnetic flux that introduces
many vortices in the two superconductors. Meron pairs
may carry a charge 6e (distributed between the two lay-
ers) or be charge neutral. The charged pairs affect the lon-
gitudinal resistivity to the flow of symmetric current. In the
sample of Spielman et al., this resistivity is large ��1 kV�,
1830
indicating that the charged vortex pairs are highly mobile.
Furthermore, the dissipation is not frozen out at the low-
est attainable temperatures, indicating that these objects
are disorder-induced rather than thermally induced. Tun-
neling in this system is then strongly influenced by these
merons, in a way discussed below. The meron pairs do
not, however, destroy the antisymmetric superfluid mode
unless they become unbound.

By appealing to the experimental observation that there
is no dc Josephson effect (i.e., current linear in the tunnel-
ing amplitude), we may use Fermi’s Golden Rule to cal-
culate the tunneling current perturbatively. For a sample
of size L2,

I�V � �
2pel2L2

h̄
�S�QB, eV � 2 S�2QB, 2eV �� ,

(3)

where S�q, h̄v�, the spectral density for the fluctuations
of the operator eiw at wave vector q and frequency v, is
proportional to the Fourier transform of �eiw�r ,t�e2iw�0,0��
(where the angle brackets denote thermal average). Our
prediction regarding the dependence of the tunneling cur-
rent on Bjj can now be easily understood. For weak disor-
der, the spectral density S�QB, eV � is sharply peaked at

eV � h̄vQB . (4)

Thus, as the parallel field is varied, the peak in the tun-
neling conductance is shifted in a way that reflects the dis-
persion of the low-energy excitation mode. This is closely
analogous to the Carlson-Goldman experiment measuring
the collective oscillations of the pair field in a supercon-
ductor [13]. An observation of this dispersing peak would
also confirm an essential ingredient of the picture we use,
namely, the existence of a single branch of low-energy ex-
citations. The parallel field allows only tunneling between
states that differ by a momentum QB. Energy conserva-
tion requires the energy of these states to differ by eV .
When there is just one low-energy excitation branch, there
is only one value of the voltage where both of these con-
ditions are fulfilled. This is not the case for a Fermi liquid
(for QB fi 0).

To begin our analysis of the effect of merons, we make
the usual separation of the order parameter phase into
a singular vortex part wm and a smooth spin-wave part
w. Just as in KT physics, the meron vortices destroy the
quasi-long-range spatial order. Similarly, it is known that
the motion of these objects destroys the quasi-long-range
temporal order and consequently introduces dissipation
into a 2D superfluid. In the present context this motion
will be shown to lead to the destruction of the Josephson
effect. This loss of long-range order is captured in the phe-
nomenological ansatz Gm�r, t� 	 �eiwm��r ,t�e2iwm��0,0�� �
exp�2 r2

2j2 2
t

tw
�. Applying this ansatz to Eqs. (1)–(3)

yields
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I�V ,Bjj� �
4el2L2

h̄2

Z `

0
dt

Z
d2r Gm�r , t�e2�1�2�D�r ,t�

3 sin
C�r , t�

2
cosQBx sin

eVt
h̄

(5)

with a “Debye-Waller factor” exp�2D�r , t��2�, where

D�r, t� 	 ��w��r, t� 2 w��0, 0��2�

�
X
q

h̄u
L2rsq

�1 2 cos� �q ? �r� cos�uqt�� coth
h̄uq
2T

(6)

(we set kB � 1 throughout) and a commutator term

C�r , t� 	 i�w��r , t�, w��0, 0��



h̄

2prs
u�ut 2 r�

∑
t2 2

µ
r
u

∂2∏21�2

, (7)

which is independent of temperature, and limits the r in-
tegral in (5) to a “light cone” of r , ut. All correlators
are evaluated in the absence of tunneling. We rely on the
global U�1� symmetry and the freedom to renormalize j

and tw to partially justify the simplifying approximation
of neglecting all disorder in the spin-wave Hamiltonian.

As long as 2prs ¿ h̄�tw ¿ T we can expand Eq. (5)
to first order [14] in C and approximate D by its zero-
temperature value. In this limit the current becomes

I�V ,Bjj� �
e
h

j2l2L2

4G
e2D�2

Z
d2p e2j �p2 �QBj

2j2�2 h̄
vp

3

Ω
dw

�eV 2 h̄vp�2 1 �dw�2

2
dw

�eV 1 h̄vp�2 1 �dw�2

æ
, (8)

where dw 	 h̄�tw . For large tw , j, Eq. (8) shows a peak
in the current at the voltage corresponding to the Gold-
stone mode energy in accordance with Eq. (4). The effect
of tw , j is to smear this peak over a range of h̄�j in mo-
mentum and h̄�tw in voltage. As long as QBj ¿ 1 and
uQBtw ¿ 1, this smearing is insignificant.

The expression for the differential conductance sim-
plifies considerably in the limit QB � 0, j ø utw , and
eV ø

h̄u
j :

dI
dV

�
1
8
e2

h
j2

�2

n0L2D
2
SAS

rs
e2D�2 dw

�eV �2 1 �dw�2 . (9)

Interestingly, we see that when tw � `, i.e., when the
merons provide a random static background phase field,
a Josephson-like singularity of dI

dV is still present (as is
the antisymmetric superfluid property). As shown be-
low, the singularity is also present at finite temperature
T ø rs. Static topological defects break translational in-
variance and thus open more phase space for excitation
of spin waves in the tunneling process. However, they do
not expand the degrees of freedom involved beyond the
single spin-wave mode, and thus do not dephase the pro-
cess enough to destroy the zero-voltage singularity.

The temperature dependence of (5) originates from the
temperature dependence of D and the temperature depen-
dence of rs and tw . Here we calculate the temperature de-
pendence of D. At zero temperature it gives the space- and
time-independent result D0 	

R
q�,

p
2 d

2q
h̄

Guq � 4.8. At

finite temperature we approximate cothx 
 1 1
1
x e

2x ,
define dimensionless length and time variables, r̃ 	 rT

h̄u

and t̃ 	 tT
h̄ , and obtain (for large r , t, and r , ut),

D�r̃ , t̃�


 D0 1
T

2prs
log j�t̃ 1 i�2� 1

q
�t̃ 1 i�2�2 2 r̃2 j2

(10)

The temperature dependence of D affects I�V � then only
at high temperature �T ¿ eV �, where we can approximate
t̃ 1 i�2 
 t̃. For utw ¿ j and Bk � 0, Eq. (5) reduces
to

I�V � �
el2L2

prsh̄

Z `

0
dt

Z
r,ut

d2r exp

∑
2

1
2

µ
r
j

∂2

2
t

tw

∏

3
j
tT
h̄ 1

q
� tTh̄ �2 2 � rTh̄u �2 j2T�2prsp
t2 2 �r�u�2

sin

µ
eVt
h̄

∂
.

(11)

Most of the contribution is then from long times, while r is
limited to be smaller than j. For a static meron background
�tw � `� we find, for eV ø T ,

dI
dV

~
l2j2L2

r2
s

µ
T
V

∂12T�2prs

, (12)

which is consistent with the more complete scaling form
which can be derived in the classical limit from the expres-
sion of Nelson and Fisher for the dynamical structure factor
of the XY model [15]. In the presence of a finite tw , the
temperature dependence of D affects the tunneling current
significantly only in the window h̄

tw
, eV , T , TKT. In

the experiment of Spielman et al., the peak width is much
larger than the temperature. Thus, the observed tempera-
ture dependence probably results from the temperature de-
pendence of rs and tw rather than D.

By using Eq. (8), we can fit the width of the conduc-
tance peak in the experiment with a phenomenological
value dw 
 0.75 K. This value gives utw 
 11�, which is
remarkably close to our estimate of j based on the meron
pair spacing. [Sufficiently close that the Lorentzian ap-
proximation in Eq. (9) for the peak width will be some-
what inaccurate.]

Our naive estimate for the peak height in the experiment
is too large by some 2 orders of magnitude, but is highly
uncertain due to the exponential sensitivity to the ultra-
violet cutoff and the acoustic approximation used in com-
puting the Debye-Waller factor. In addition, the estimate
1831
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DSAS 
 90 mK is exponentially sensitive to the parame-
ters in the modeling of the barrier potential (in particular,
the poorly understood effective mass appropriate for the
high Al concentration in the barrier) and so might be off
by a significant factor [12]. It might also be possible that
the superfluidity and tunneling occur predominantly in iso-
lated regions close to filling factor n � 1 containing few
vortices. The parasitic series transport resistance �1�sxx

in this Corbino-like geometry could significantly reduce
the peak height.

We now consider interlayer tunneling under the com-
bined effect of a time-independent dc voltage and a
time-dependent ac electric field E sinvt, directed perpen-
dicular to the two layers. As long as the system is not
heated, this field can be incorporated into our calculation
by writing T6 � 2

R
d �r le6i�w��r�1�eEd� h̄v� cosvt�. By

repeating the calculation carried out above, we find that
the tunneling differential conductance dI

dV �V � exhibits
peaks at eV � nh̄v, with n an integer. This feature is
common to all tunneling systems, where the dc differential
conductance is strongly peaked around zero voltage (for
example, a bilayer system at zero magnetic field). We
note, however, that the quantum Hall ferromagnet is rela-
tively less prone to heating, due to the small longitudinal
conductivity.

Finally, we discuss the current distribution in an ideal-
ized zero-disorder and vortex-free system. Equations (1)
and (2) then do indeed lead to a Sine-Gordon equation for
the phase, as in a long Josephson junction. However, due
to the two dimensionality of the problem, the critical cur-
rent is not proportional to the area of the sample. Consider
a setup where the current is fed into one layer from, say,
x � 2`, and taken out from the other layer at x � `, and
where tunneling is limited to the region 2

L
2 , x ,

L
2 .

Since the symmetric part of the current �Isym� is conserved,
the boundary conditions for the Sine-Gordon equation
require ≠w

≠x jx�L�2 � 2
≠w

≠x jx�2L�2 � Isym. For L ¿ jJ 	p
4p�2rs�DSAS � 4 mm, the time-independent solution

to the Sine-Gordon equation in the tunneling region is

w�x� 
 2 arccos tanh
L

2
2jxj

jJ
; tunneling takes place only

within a distance of order jJ of the x � 6
L
2 lines, and

the maximal current that can tunnel is L independent, and
is given by �2e�h̄�rsW�j (here W is the width of the
current contact). For the parameters we use, this current
is �4 nA�mm ? W � 80 nA. The experimental mea-
surement current was much smaller than this value. Thus,
the absence of a Josephson effect cannot be attributed to
a large measurement current. For the sample geometry
described above and used in the experiment, the tunnel
resistance is effectively in series with the Hall resistance.
The observed tunnel resistance is, however, much larger,
�102h�e2, again indicating that there is no Josephson
effect.

To conclude, we have attributed the lack of a Josephson
effect in tunneling measurements in a bilayer quantum Hall
1832
n � 1 state to density inhomogeneities that introduce dy-
namical topological defects into the order parameter. The
observed peak width is quantitatively consistent with this
picture. We showed that a measurement of the tunneling
I�V � dependence on Bk would map the dispersion relation
of the low-energy mode of the system, and that tunnel-
ing in the presence of an ac electric field would result in
resonances at voltages corresponding to the ac frequency.
Finally, we showed that, even for a perfect sample where
the Josephson effect takes place, the critical current would
not scale with the size of the sample.
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