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Power Laws and Crossovers in Off-Critical Surface-Directed Spinodal Decomposition
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We study the dynamics of phase separation in binary mixtures near a surface with a preferential
attraction for one of the components of the mixture. We obtain detailed numerical results for a range of
mixture compositions. In the case where the minority component is attracted to the surface, wetting layer
growth is characterized by a crossover from a surface-potential-dependent growth law to a universal law.
We formulate a simple phenomenological model to explain our numerical results.
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When a binary mixture �AB� is quenched from the
one-phase region inside the miscibility gap, the unstable
homogeneous state decays via nucleation or spinodal de-
composition and the subsequent growth of A- and B-rich
domains [1,2]. Much effort has focused on understanding
the growth law for the domain size, R�t� ~ tf, where t

is the time after the quench [2]. It is now well-established
that f �

1
3 for solid binary mixtures due to a droplet

evaporation-condensation mechanism, irrespective of the
composition of the mixture. This growth law is referred
to as the Lifshitz-Slyozov or LS law [3]. In the case of
fluid mixtures, on the other hand, droplet diffusion and
coagulation [4] also yields f �

1
3 in d � 3, and may

be the dominant mechanism when the morphology is not
bicontinuous. However, if the phase-separated structure
has an interconnected morphology, hydrodynamic flows
yield an exponent f � 1 [2,5].

For many materials, it is of great experimental inter-
est to consider phase separation in a thin-film geometry
or near surfaces (see reviews in [6–8]). Typically, one
component (say, A) may be preferentially attracted to the
surface. After segregation has started via surface-directed
spinodal decomposition [9–11], competition sets in be-
tween the growth of a wetting layer at the surface and usual
domain growth in the bulk. This problem has been the
subject of intense experimental investigation, particularly
in the context of polymer and fluid mixtures [9,10]. While
various exponents x for the growth of the thickness R1�t�
of the wetting layer �R1�t� ~ tx� were observed in simu-
lations [11–16] and experiments [6–10], a comprehensive
theoretical understanding of these observations was mostly
lacking. For a quench onto the coexistence curve, where no
phase separation occurs in the bulk, an attractive potential
V �z� ~ z2n (z being the distance from the surface) results
in a wetting-layer growth with x � 1��2�n 1 1�� [17], but
this scenario does not apply in the present context.

In this Letter, we provide a fresh perspective on this
problem through extensive numerical calculations using
the Cahn-Hilliard-Cook (CHC) model with appropriate
boundary conditions [7,8]. We will focus on the case
where domain growth is driven by diffusive processes only
[18]; and the system is quenched deep into the coexistence
0031-9007�01�86(9)�1797(4)$15.00
region so that mean-field arguments are applicable. In par-
ticular, we present a phenomenological explanation of our
results which constitutes a reasonable understanding of the
exponents which characterize surface-directed spinodal
decomposition for arbitrary surface fields and mixture
composition.

The order parameter field f��x, t� � f� �r, z, t�, which
measures the local composition, satisfies the standard CHC
equation [7,8]:

≠f

≠t
� 2=2�f 2 f3 1

1
2=2f 1 V �z�� 1 �= ? �j .

(1)

In Eq. (1), �r is a coordinate parallel to the surface lo-
cated at z � 0; �j is a Gaussian random force; and all vari-
ables have been rescaled into dimensionless units. Thus,
f � 11�21� corresponds to the A-rich (B-rich) phase.
The Gaussian white noise j� �x, t� satisfies the fluctuation-
dissipation relation:

�ji� �x, t�jj� �x0, t0�� � edijd��x 2 �x0�d�t 2 t0� , (2)

where e measures the strength of the noise (e ~ T at
low temperature T ). To avoid problems due to a sin-
gularity of the potential V �z� at the surface �z � 0�, we
choose V �z� � H1 for z # 1 and V �z� � H1z2n for z .

1. Equation (1) needs to be supplemented by boundary
conditions [7,8]:

≠f� �r, z � 0, t�
≠t

� V �0� 1 gf 1 g
≠f

≠z

Ç
z�0

, (3)

0 �
≠

≠z
�f 2 f3 1

1
2 =2f 1 V �z� 1 noise�jz�0. (4)

In Eq. (3), the parameters V �0�, g, g essentially charac-
terize the static surface phase diagram (we consider here
only a choice where the surface is completely wetted by
the A-rich phase in equilibrium); and Eq. (4) corresponds
to zero current across the plane z � 0.

Figures 1 and 2 exhibit typical evolution pictures ob-
tained from Eqs. (1)–(4) for the domains formed in d � 2
from a homogeneous initial condition with average order
parameter f0. We consider a surface potential with ex-
ponent n � 4, which corresponds to nonretarded van der
© 2001 The American Physical Society 1797
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FIG. 1. Evolution pictures obtained from a simulation of the
model in Eqs. (1)– (4). The initial condition consisted of small-
amplitude order parameter fluctuations about an average value
f0 � 20.4. The simulations were done on two-dimensional lat-
tices of size Nx 3 Nz �Nx � 400, Nz � 300�, with discretiza-
tion mesh sizes of Dx � 1, Dt � 0.03. Lattice sites with
f . 0 (i.e., A-rich) are marked in black, and lattice sites with
f , 0 are unmarked. The surface (located at z � 0) is com-
pletely wetted by the A-rich phase. In the picture at t � 24 000,
we have schematically indicated the various length scales, i.e.,
R�t�, R1�t�, and h�t�. The numerical values for wetting layer
length scales at t � 24 000 are R1 	 17.4, h 	 39.5.

Waals’ interactions in d � 2. The other parameter values
were H1 � 0.8, g � 20.4, and g � 0.4 corresponding to
complete wetting in equilibrium [7,8]. The noise ampli-
tude was taken to be e � 0.0817. The choice of parame-
ters will be discussed in an extended publication [19]. If
the phase attracted to the surface is the minority compo-
nent (Fig. 1), we see that both a surface enrichment (or
wetting) layer of thickness R1�t� and a depletion zone of
thickness h�t� are formed. It is reasonable to assume that
the wetting and depletion layers have an average compo-
sition comparable to f0, suggesting that R1�t� and h�t�

FIG. 2. Analogous to Fig. 1, but for f0 � 10.4.
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exhibit the same time dependence. (We have confirmed
this numerically.) For the opposite case, where the ma-
jority component is attracted to the surface (Fig. 2), this
layered structure of enrichment/depletion layers is obvi-
ously absent.

The asymmetry of the local structure near the surface
leads to pronounced differences for the growth law of the
wetting layer. For f0 . 0, one finds an exponent com-
patible with x �

1
6 , independent of f0 [Fig. 3(a)]. For the

case f0 , 0, the situation is more complicated [Fig. 3(b)].
There is an initial slow growth regime where the exponent
is compatible with x �

1
6 . However, this crosses over to

a faster growth with an exponent compatible with x �
1
3

[14,15]. The crossover time is later for higher surface

FIG. 3. Log-log plot of the first zero of laterally averaged order
parameter profiles, R1�t� versus time t. We present results for
(a) three choices of f0 . 0, as indicated, and (b) four choices of
f0 # 0, as indicated. All data sets were obtained from averages
over 200 independent runs.
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field strengths; and the initial growth exponent is potential
dependent [12].

How can one understand all these results? An examina-
tion of Fig. 1 suggests the growth mechanism of the wet-
ting layer for f0 , 0. The bulk droplets [of length scale
R�t�] must feed the wetting layer [of thickness R1�t�],
and this requires diffusion through the depletion zone [of
thickness h�t�] [15]. We need to estimate the current at
z � R1, which consists of two pieces,

Jz �
dV �z�

dz

Ç
z�R1

2
s

Rh

	 2
nH1

Rn11
1

2
s

RR1

µ
1 1 f0

1 2 f0

∂
, (5)

s being the surface tension. While the first term of the
current is an obvious consequence of the surface poten-
tial, the second is due to the fact that there is a gradient of
chemical potential from m 	 s�R (at the surface of the
droplets) to m 	 0 (at the interface between the enrich-
ment and depletion layer, a distance h apart).

Our assumption that overall composition is approxi-
mately fixed at f0 in the wetting plus depletion layers
yields h 	 R1�1 2 f0���1 1 f0�, which we have veri-
fied numerically [19]. For domain growth in the bulk,
we have the LS growth law R�t� � f�f0� �st�1�3, where
the function f�f0� is analytically understood in the limit
f0 ! 61, and numerically studied only for intermediate
values of f0 [1,2].

Using this result, we find that, for t ! `, the second
term on the right-hand side of Eq. (5) always dominates,
yielding the universal domain growth law [14,15]:

R1�t� 	

s
3

f�f0�
�1 1 f0�
�1 2 f0�

�st�1�3, t ! `,

if f0 , 0 . (6)

However, for early times the first term dominates, yielding
the potential-dependent growth law

R1�t� 	 �n�n 1 2�H1�1��n12�t1��n12�, t , tc,

if f0 , 0 , (7)

with a crossover time scale obtained by equating Eqs. (6)
and (7),

tc 	 �n�n 1 2�H1�3��n21�
∑

f�f0�
3

1 2 f0

1 1 f0

∏�3�n12���2�n21��

3 s2�n12���n21�, n . 1 . (8)

Clearly, the crossover can be extremely delayed —
depending on the surface-field strength and the range of
the potential. The above arguments should clarify the
observation of a range of growth exponents in simulations
[11–16] and experiments [6–10, 20–22].

Next, let us consider the case f0 . 0, where the ma-
jority component is preferred by the surface (Fig. 2). Pre-
liminary numerical results for this case have been reported
by Brown et al. [16]. Notice that the second term on the
right-hand side of Eq. (5) is not present for f0 . 0, as the
droplets are of the nonpreferred phase, and the chemical
potential at the droplet surface is negative, i.e., they do not
feed the preferred species to the wetting layer. Thus, the
growth law in Eq. (7) holds for arbitrary times. As a matter
of fact, the droplets in Fig. 2 actually attract the preferred
component and should slow down the growth in Eq. (7),
though we have not seen this in our simulations.

When one considers a short-range surface potential, one
has to consider the limit n ! ` in the above treatment.
It is straightforward to see that this yields a logarith-
mic growth law, R1�t� ~ lnt, for the potential-dependent
regime.

Interestingly, a logarithmically slow growth law would
also result from the second term in Eq. (5) if bulk domains
grow in fluid mixtures according to the Siggia mechanism
[5], R�t� ~ t, yielding d�R2

1�t���dt ~ t21 and, hence,
R2

1�t� ~ lnt. Essentially, if droplets in the bulk grow
very fast, they fail to feed the growing surface layer suffi-
ciently. In that case, Eq. (7) would dominate growth even
for f0 , 0, provided diffusive mechanisms still apply. Of
course, there are a variety of other mechanisms for fast
wetting-layer growth in phase-separating fluids, e.g., hy-
drodynamic draining through bulk tubes which establish
contact with the wetting layer [18,23].

In conclusion, we have demonstrated by numerical cal-
culations supported by phenomenological arguments that,
at the surface of deep-quenched phase-separating binary
mixtures, there exists a length scale that grows with time
as R1�t� ~ t1��n12�, when the surface attracts a compo-
nent with a potential V �z� ~ z2n [24]. If the preferred
component is the majority component, this growth law is
the asymptotic behavior for t ! `; otherwise, a crossover
to the LS law R1�t� ~ t1�3 occurs after a crossover time
tc. The present Letter elucidates the simple laws gov-
erning morphology evolution in surface-directed spinodal
decomposition. Experiments [6–10, 20–22] and earlier
numerical simulations [11–16] should be interpreted in the
context of the framework discussed here. At the same time,
we hope that our results will provoke fresh experiments on
these problems —especially for off-critical morphologies
in both polymer blends and binary fluid mixtures.
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