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Control of Chaotic Taylor-Couette Flow with Time-Delayed Feedback
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We demonstrate that unstable periodic orbits embedded in the experimental chaotic attractor deter-
mined by the Taylor-Couette flow can be stabilized with a time-delay autosynchronization algorithm.
The optimal parameters of the feedback and their dependence on the control parameter are shown as
experimental results.
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There are several methods that deal with the problem of
stabilization of chaotic dynamics to periodic orbits. The
method proposed by Ott, Grebogi, and Yorke (OGY) [1]
is based on the determination of stable and unstable direc-
tions in a Poincaré section. This technique applies small
perturbations to an accessible control parameter in dis-
crete time intervals. It has been applied to some experi-
mental systems [2–5] including a stabilization of pattern
dynamics in a Taylor vortex flow with hourglass geom-
etry [6]. Another method of chaos control is known as
time-delayed autosynchronization (TDAS) and has been
proposed by Pyragas [7]. This technique uses a continu-
ous time-delayed feedback. It has been shown to be an
efficient method and has been applied in numerical simu-
lations as well as in experiments [8–12].

A control algorithm that uses time-delayed feedback re-
quires less previous information about the system behav-
ior than methods based on the OGY algorithm. Unstable
periodic orbits (UPOs) of the dynamical system can be
stabilized with an appropriate feedback determined by the
period of the UPO. From the theoretical point of view
the stabilization with TDAS has not been fully understood.
Important progress has been made by applying Floquet the-
ory, leading to some limitations of the technique as the
success of TDAS depends on the torsion of neighboring
trajectories in the phase space [13].

We report in this Letter that we have succeeded in sta-
bilizing the unstable period-one and period-two orbits in
a spatially extended flow experiment, the Taylor-Couette
system.

The Taylor-Couette flow consists of a viscous fluid be-
tween two concentric cylinders with radii ri (inner cylin-
der) and ro (outer cylinder). While the inner cylinder
rotates, the outer cylinder and the end plates are at rest.
The external control parameter is the Reynolds number,
defined as Re � �2pfdri��n, where f denotes the rota-
tion frequency of the inner cylinder, d � ro 2 ri is the
gap width, and n � 11.8 cS is the kinematic viscosity of
the silicon oil, used as fluid for the experiment. The given
experimental parameters describing the experimental ap-
paratus are ri � 12.5 mm, ra � 25 mm, G � 0.42, and a
lid inclination of 0.39±, which causes a slight asymmetry of
the system geometry. The aspect ratio G � L�d is defined
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as the ratio of cylinder height L and the gap width d. For
the low-dimensional dynamics that are the topic of this pa-
per, the global dynamics can be derived from a scalar vari-
able [14]. In our case the local axial velocity component
yz � yz�t, x� is measured by a real-fringe laser-Doppler
velocimeter (LDV) and recorded by a phase-locked-loop
analog tracker. This technique provides a precise measure-
ment of one velocity component of the flow at a chosen
point of measurement. After filtering with a bandpass the
signal is fed into an analog-to-digital converter with 14-bit
resolution. The resulting digital signal is used for the feed-
back calculation.

As long as the Reynolds number Re is very small, the
flow is a circular shear flow, called the circular Couette
flow. If Re is increased to a quasicritical value ReTVF, the
flow becomes centrifugally unstable and assumes a regular
cellular vortex structure in which annular vortices with
alternating flow direction enclose the inner cylinder. This
flow is called the Taylor vortex flow (TVF). The number
and geometry of these vortices depend on the aspect ratio
G � L�d [15].

Numerical approaches to flow experiments are based
on the Navier-Stokes equations and hence lead to an
infinite-dimensional phase space. As a result there is no
model for the dynamics of the Taylor-Couette system due
to the large number of possible solutions. Although the
steady solutions correspond to highly correlated system
states, we speak of a spatially extended system, because
time constants occur that are caused by the propagation
of perturbations, e.g., changes of the control parameter.
However, small values of the aspect ratio �G # 1� reduce
the number of steady solutions, because only states with
one or two Taylor vortices are possible. For this system
of reduced complexity, the main bifurcations have been
found consistently both by numerical and by experimental
investigations [14]. The first vortex structure that occurs
is a symmetric two-cell state �2s�. On increasing the
Reynolds number the two-cell state 2s branches into two
equivalent single-cell state modes 1a, each with a large
main vortex near the top or the bottom, respectively, and a
small weak vortex. For higher Reynolds numbers there is
a restabilized symmetric two-cell state 2s�, which shows a
time-periodic Hopf bifurcation. With increasing Reynolds
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number the 2s� state may undergo a transition to chaos
via period doubling or intermittency until it loses stability
to the one-cell states. The chaotic attractors used for this
investigation arise from period-doubling cascades. Such
scenarios have been found only in experiments with a
small inclination of one end plate. The dependence of the
transition to chaos on the boundary conditions for small
values of G is discussed in [16].

Thus we have a spatially extended flow experiment, the
dynamics of which is at least roughly understood. This,
combined with a precise measurement technique, enables
us to apply the chosen feedback control method.

The feedback F�t� for the control process is proportional
to the difference D�t� between the signal yz�t� provided by
the LDV and the delayed signal yz�t 2 t� [7],

Ft�t� � k�yz�t� 2 yz�t 2 t�� � kD�t� . (1)

The perturbation F�t� is applied to the cylinder rotation
frequency f0 (Fig. 1), which corresponds to a control pa-
rameter Re0 � Re� f0�:

f�t� � f0 1 F�t� . (2)

We restrict the absolute value of the perturbation to
F0 � 0.127 Hz (which corresponds to jDRej � 10.8 for
the given viscosity):

F�t� �

8<
:

F0 Ft�t� . F0
Ft�t� 2F0 # Ft�t� # F0
2F0 Ft�t� , 2F0

. (3)

As explained in [7], the restriction does not change the
result, if control is achieved. In the given case of multi-
stability the restriction of imposing a maximum absolute
value F0 of the perturbation is important to keep the sys-
tem from switching from the two-cell to a one-cell state.

If yz�t� is a periodic signal corresponding to a periodic
solution yi�t� of the system and t � Ti the corresponding

FIG. 1. Illustration of the feedback loop: The feedback is
instantaneously calculated and applied to the rotation frequency
of the inner cylinder of the Taylor-Couette flow experiment.
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period, the perturbation F�t� becomes zero. This means
that yi�t� is a solution of both the perturbed and the un-
changed system. As the weight k associates with two com-
pletely different variables, its absolute value and unit are
irrelevant. The absolute values of k that appear in the fol-
lowing text are used to allow a comparison with the results
for larger parameter ranges.

Chaos control can be achieved by choosing an appropri-
ate value of the adjustable weight k. Specific values of k
provide a stabilization of the desired UPO [represented by
the solution yi�t�], which is embedded in the strange attrac-
tor. These optimal values strongly depend on the control
parameter and the chosen UPO; this will be discussed later.

The choice of the experimental parameters provides a
2s� state with a clear period doubling with increasing Re,
as shown in Fig. 2. The phase space reconstruction for
a period-one solution [Fig. 2(a)], a period-two solution
[Fig. 2(b)], and the chaotic attractor [Fig. 2(c)] is shown.
The reconstruction has been performed by time-delay em-
bedding as proposed by Takens [17], such that a vector in
the embedding space is given by

�x�t� � yz�t�, yz�t 1 trec�, . . . , yz�t 1 trec�m 2 1�� ,

(4)

where trec is the reconstruction delay time and m is the
embedding dimension.

Figure 3 shows the result of applying the control algo-
rithm with delay t � 1.72s, weight k � 0.062, and con-
trol parameter Re � 567. The value of the selected delay

FIG. 2. Experimental bifurcation diagram of the restabilized
two-cell state. Extrema of the axial velocity yz are plotted
against the Reynolds number Re. For illustration of the pe-
riod doubling, the phase space reconstruction of the attractor
is shown for (a) Re � 548 with a resulting period of T � T0,
(b) Re � 560 with T � 2T0, and (c) Re � 567 showing the
chaotic attractor.
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FIG. 3. Experimental data showing the phase space reconstruc-
tion of the strange attractor (a) of the unperturbed system for
Re � 567 and (c) the result of the chaos control algorithm for
k � 0.062, t � 1.72. (b),(d) The corresponding power spectra
in dB with respect to the main fast-Fourier transform channel.

time t is chosen near the main period of the system and
corresponds to the period-one UPO of the system. As a
result the UPO becomes stable. The phase space recon-
struction [Fig. 3(c)] is comparable to the stable period-one
solution for Re � 548, shown in Fig. 2(a).

When starting the control process the state of the system
is in general not in the neighborhood of the UPO selected
by the choice of t. As a result there is a large difference
D�t� � yz�t� 2 yz�t 2 t� between the present and the
time-delayed signal at this stage of the process. Maximum
values of the absolute difference jD�t�j are of the same
magnitude as the amplitude of the signal yz itself. After
a transient process, jD�t�j stays lower than 15% of the
signal amplitude. This process of targeting the trajectory
onto the desired orbit is accomplished in less than 250T0
for optimal values of k and t. A small deviation from
these optimal parameters leads to a higher residual control
signal but it does not increase the needed time to more
than 500T0 s. The power spectrum of the experimental
control result [Fig. 3(d)] still shows a small peak at f0�2,
originating from the small deviation of the selected UPO.
An investigation of the dependence of the mean difference
jD�t�j on k and t, discussed below, will show that this is
the best result one can attain for the given experimental
setup.

We now discuss the dependence of the mean dif-
ference jD�t�j on k. It appears that control of the
period-one orbit can be achieved in a narrow interval
of the weight k, as shown in Fig. 4(b). Each value
jD�t�j � j y�t� 2 y�t 2 t�j has been calculated for
40 000 points at a sampling rate of 50 Hz after 800 s lead
time. This large value of the lead time ensures that control
has certainly been achieved if possible. Figure 4(a) shows
FIG. 4. Experimental results for the dependence of the period-
one control result on k for a delay time of t � T0 � 1.72 s.
(a) The extrema of yz and (b) the corresponding mean difference
jD�t�j.

the corresponding extrema of the signal yz . One can
observe that the controlled system loses stability via
period doubling with decreasing k.

Figure 5(b) shows the dependence of jD�t�j on t for
the stabilization of the period-one UPO. If there is a small
deviation �Dt � t 2 T0� between the delay and the pe-
riod of the UPO, the resulting control signal also has a pe-
riod of T0, while its phase shift and amplitude depend on
Dt. Consequently, the control signal F�t� applies a slight
modulation to the cylinder rotation frequency, if the sta-
bilization is not affected by the residual feedback. For a
stable sine wave the difference can be calculated to

FIG. 5. Experimental results for the dependence of the period-
one control result on the delay time t for a weight k � 0.065.
(a) The extrema of yz and (b) the mean difference jD�t�j. The
dotted line shows the corresponding jD�t�j for a sine wave
[Eq. (5)].
1747



VOLUME 86, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 FEBRUARY 2001
FIG. 6. Experimental results for the dependence of the period-
two control result on the delay time t for a weight k � 0.065.
(a) The extrema of yz and (b) the mean difference jD�t�j.

jD�t�j �t� �
2y0

p

s
2 2 2 cos

2p

T0
t (5)

using Eq. (1), where y0 is the amplitude of the oscilla-
tion. The good agreement of the experimental results for a
successful stabilization with this optimal dependence de-
scribed by Eq. (5) can be seen in Fig. 5(b) for 1 . t�T0 .

1.1. Figure 5(a) shows that, in this range of t�T0, stabil-
ity can be reached in spite of the residual feedback. The
controlled system loses stability via period doubling with
increasing Dt.

Figure 6(b) shows the dependence of jD�t�j on t for
the stabilization of the period-two UPO. As Fig. 6(a)
shows, the stabilization can be reached for a delay time
larger than 2T0 and a larger residual mean difference jD�t�j
than the corresponding values for the stabilization of the
period-one UPO.

Figure 5(b) shows that the minimum value of jD�t�j
does not occur precisely at t�T0 � 1, as one would expect.
This, in addition to the nonvanishing feedback for t ! `,
shows that the optimal performance cannot be reached, in
contrast to numerical simulations of TDAS. There are two
possible explanations for this insufficiency for the case of
a spatially extended flow experiment. The first possible ex-
planation is given by the presence of measurement noise.
This noise is an unwanted perturbation fed back into the
system. In comparison with numerical results, this can be
a reason for the nonvanishing feedback values F�t� even
after stabilization has been reached, but this effect does not
explain the asymmetry of jD�t�j with respect to t�T0 � 1.
The second possible explanation is given by the propaga-
tion time of the perturbation within the fluid, which leads
to an additional delay time and causes noninstant feedback
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at the chosen point of measurement. The influence of an
additional delay on the TDAS control method is discussed
in [18]. In the case of a linear delay, such as a control loop
latency, the interval of the weight k, for which stabilization
can be reached, gets smaller with an increasing additional
delay. In general the additional delay shifts the points of
frequency splitting which delimit the interval of stabilizing
parameter values k and t.

We have applied the TDAS scheme successfully to a
spatially extended flow experiment, the Taylor-Couette
system. Both the period-one and the period-two UPOs
have been stabilized with an appropriate feedback. The
parameter ranges in which control is possible have been
discussed, as well as possible explanations for the residual
feedback.

The dependence of the quality of the control on the
additional delay, caused by the propagation time within
the fluid, will be a topic of further investigation. It will
also be beneficial to apply chaos control methods on other
modes of the Taylor-Couette flow.
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