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Coherent Control of Quantum Chaotic Diffusion
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Extensive coherent control over quantum chaotic diffusion using the kicked rotor model is demonstrated
and its origin in deviations from random matrix theory is identified. Further, the extent of control in the
presence of external decoherence is established. The results are relevant to both areas of quantum chaos
and coherent control.
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The kicked rotor and its classical limit, the standard
map, have long served as paradigms for classical and quan-
tum chaos [1]. The classical dynamics shows characteris-
tic diffusive energy growth whereas the quantum dynamics
shows similar chaotic short time behavior, followed by the
suppression of diffusion at longer times. In this Letter,
we demonstrate that the quantum features of the chaotic
kicked rotor allow for extensive coherent control [2] over
quantum chaotic diffusion, even in the presence of modest
decoherence. In particular, we show that quantum relax-
ation dynamics in the kicked rotor model is sensitive to
the coherence characteristics of the initial state, and that
altering these characteristics allows for control over the
energy diffusion. The extent of the controlled behavior
is vast, from strong suppression to strong enhancement of
diffusion.

Consider the kicked rotor whose Hamiltonian is given
by
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where L̂ is the angular momentum operator, u is the con-
jugate angle, I is the moment of inertia, l is the strength
of the “kicking field,” and T is the time interval between
kicks. The quantum time evolution operator F̂ for times
�N 2 1�2�T to �N 1 1�2�T is [1]
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with dimensionless parameters t � h̄T�I and k � lT�h̄.
The classical limit [1] of this quantum map is given by the
standard map, which, when expressed in terms of dimen-
sionless variables u and the scaled c-number angular mo-
mentum L̃ � Lt�h̄, takes the following form:

uN � uN21 1 �L̃N 1 L̃N21��2 ,

L̃N � L̃N21 1 k sin�uN21 1 L̃N21�2� ,
(3)

where k � kt, and �L̃N , uN � represents the phase space
location of a classical trajectory after N kicks. The sys-
tem is chaotic for k . kcr � 0.9716 . . . . The resultant
diffusion constant can be defined as the absorption rate of
the average scaled rotational energy Ẽ � �L̃2��2. Com-
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paring classical and quantum dynamics for typical initial
classical states shows that quantum dynamics displays sig-
nificant suppression of the classical chaotic diffusion, i.e.,
the external field can only excite a finite number of unper-
turbed energy levels [3].

The fact that the rotor is a Hamiltonian system and
the kick is coherent implies that the system maintains
its quantum phase throughout the evolution. If this
is the case then the system should be controllable via
coherent control [2], i.e., by using quantum interference
phenomena to affect the dynamics. To demonstrate this,
and to examine the extent of possible control, we consider
the dynamics of states which are initially composed of
superpositions of two arbitrary angular momentum eigen-
states, jm� � exp�imu��

p
2p and jn� � exp�inu��

p
2p.

Each of these eigenstates is classically allowed, with
a corresponding classical distribution function given
by rc

m�u, L̃� � dL̃�t,m�2p and rc
n�u, L̃� � dL̃�t,n�2p ,

respectively [4].
To show that changing the coherent characteristics of

the initial state significantly alters the subsequent dynam-
ics, we consider the dynamics of states given initially by
the superposition jc� � cos�a� jm� 1 sin�a� exp�ib� jn�.
Typical results, culled from numerous cases of varying a,
b, k, and t are shown below and correspond to a weaker
and stronger chaotic case, and to two values of b, i.e.,
b � 0, and b � p . Specifically, we display below re-
sults for case (a) jc6

a � � �j12� 6 j21���
p

2, with t �
0.5, k � 5.0, and for case (b) jc6

b � � �j11� 6 j12���
p

2,
with t � 1.0, k � 5.0. Note that neither the basis states
nor the superposition states are eigenstates of the parity
operator.

Figure 1 shows Ẽ for each of these two systems and
for each of the values of b. Figure 1a, for example,
displays Ẽ for jc2

a � (dashed curve) and for jc1
a � (solid

curve). Clearly, the initial state jc2
a � gives clear diffu-

sive behavior during the first 40 kicks whereas energy
absorption in the case of jc1

a � is completely suppressed.
As a result, Ẽ�t � 40T � � 9.6 for the jc2

a � case, while
Ẽ�t � 40T � � 1.6 for propagation from the initial state
jc1

a �. Note (i) that this huge difference is achieved
solely by changing the initial relative phase b between
the two participating states j12� and j21� in the initial
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FIG. 1. The expectation value of the dimensionless scaled ro-
tational energy Ẽ � �L̂2�t2�2h̄2 versus time (in units of T ).
(a) Solid and dashed lines are for the initial states jc1

a � and
jc2

a �, respectively, t � 0.5, k � 5.0. (b) Solid and dashed lines
are for the initial states jc

1
b � and jc

2
b �, respectively, t � 1.0,

k � 5.0.

superposition, and (ii) that by contrast, each of j12� or
j21� individually would behave similarly to one another
with respect to energy absorption, giving Ẽ�t � 40T � �
5.4 and 6.0, respectively. Hence, the observed control
is due entirely to changing the coherent properties of the
initial superposition state.

Similar control persists for the more chaotic case shown
in Fig. 1b. Here jc1

b � (solid line) shows extensive chaotic
diffusion (i.e., compare ordinates scale for Figs. 1a and 1b)
for up to 45 kicks, giving Ẽ�t � 45T � far higher than the
value of 70.4 and 77.1 reached by propagating either of
the basis functions j11� and j12� independently. Further,
and by contrast, there is essentially no quantum diffusion
after t � 4T for jc2

b � (dashed line). Control (not shown)
is possible for the resonant case as well, e.g., where t �
p�3, but it is somewhat less extensive.

These differences are also reflected in the details of the
evolving wave functions. For example, Fig. 2 shows the
1742
FIG. 2. Probability P�m� of finding the system in the state jm�
at t � 60T . Results are for the cases shown in Fig. 1.

probability P�m� of finding the system in the state jm� at
t � 60T . For case (a), P�m� for jmj $ 10 is 15.8% and
3.4% for b � p and for b � 0, respectively. Similarly,
for case (b) P�m� differs by a factor of 5.4 for the two
b values (3.2% vs 17.2%) in the probability of exciting
the rotor to high-energy rotational states jm�, jmj $ 20.
In both Figs. 2a and 2b it is evident that the difference in
final populations resulting from the evolution of the two
superpositions is an erratic function of m with few evident
trends.

The behavior shown in Fig. 1 is in sharp contrast to that
which would be observed for the same initial distributions
propagated classically. These computations are shown in
Fig. 3 and result from classical propagation of the initially
non-positive-definite Wigner function rW �u, L̃� associated
with the wave function cos�a� jm� 1 sin�a� exp�ib� jn�.
That is, we classically propagate
rW �u, L̃� � cos2�a�rc
m�u, L̃� 1 sin2�a�rc

n�u, L̃� 1
1

2p
sin�2a� cos�b 2 �m 2 n�u�dL̃�t,�m1n��2 , (4)

for each of jc6
a � and jc

6
b �. In all cases, the classical results show (Fig. 3) strong diffusion, characteristic of the chaotic

dynamics of the standard map. There are only small differences in the Ẽ diffusion between jc1
a � and jc2

a � and between
jc

1
b � and jc

2
b �.
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Consider then the origins of coherent control of chaotic systems in the quantum dynamics and the behavior in the classi-
cal limit. To this end we diagonalize the quantum map operator F̂ by a unitary operator Û, i.e., �ijF̂jj� �

P
k e

2ifkU�
kiUkj ,

where Uij � �ijÛjj�, j � 1, 2, . . . is the eigenvector with eigenphase fi. After the initial superposition state jc� �
cos�a� jm� 1 sin�a� exp�ib� jn� is kicked N times, we have

2Ẽ
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∏
, (5)
where c.c. denotes the complex conjugate of the imme-
diately preceding term within the brackets. The total
term in brackets corresponds to interference effects due
to initial-state coherence. For large N only the j � j0

terms will survive in the summations due to rapid oscil-
lations of eiN�fj2fj0�. Hence the last two terms reduce to
1�2 sin�2a�e2ib

P
l l

2
P

j jUjlj
2U�

jmUjn 1 c.c.
If there is no structure in jUjlj

2 and the eigenvector
components U�

jm and Ujn are perfectly independent,
as expected from random matrix theory [5], thenP

j jUjlj
2U�

jmUjn is small and the magnitude of the
interference term is 1�

p
D times smaller than that of the

incoherent terms (where D is the effective dimension of
the Hilbert space) [6], interference vanishes, and control
is lost. Hence, the coherent control of quantum chaotic
diffusion relies upon the residual statistical correlations
between eigenvector components 	Uij
. Indeed, in this sys-
tem the matrix �ijF̂jj� is known to display a band structure

FIG. 3. As in Fig. 1 except that Ẽ is calculated by classically
propagating the initial non-positive-definite Wigner function
in Eq. (4).
with the bandwidth 2k where the quantity k2�N , where
N is the size of the banded random matrices, provides a
measure of the statistical deviations from random matrix
theory [7]. Numerical results show that k2�N , 0.2 is
sufficiently small for control to persist. This being the
case, we obtain a necessary condition to ensure the signifi-
cance of the interference term, namely, k , 0.2Nk�k or
t . k2��0.2Nk�, where Nk is the minimum grid size for
accurate fast-Fourier transform calculations with t � 1.
Numerical studies indicate that, for k , 10.0, Nk � 256,
implying that we require k , 50�k or t . k2�50 for con-
trol. This makes it clear that as one approaches the clas-
sical limit (by increasing k or decreasing t with fixed k),
coherent control is lost.

Further evidence that deviations from random matrix
theory are responsible for control was obtained by exam-
ining control using a model composed of a banded matrix
with random matrix elements. Control was obtained in
this case as well, but was not as extensive as the kicked
rotor system since the latter displays less random matrix
character.

The dynamics of the kicked rotor in the presence of
decoherence effects has also been examined both experi-
mentally [8] and theoretically [9]. The survival of control
in the presence of decoherence is of interest both in gen-
eral and for this particular case. To examine this issue we
introduce a simple decoherence model. Here, the quan-
tum map operator between �N 2 1�2�T and �N 1 1�2�T
is taken as R̂F̂, where R̂ introduces random phases into
the system. Specifically, R̂jm� � ei2prj�m,N�jm�, where
m � 0, 61, 62, . . . , and j�m,N� takes on random values
that are distributed uniformly between 0 and 1 for each dif-
ferent m or N . Note that this model is such that its r ! 1
limit corresponds to measurement-induced quantum diffu-
sion [10].

The density matrix r̂ for the dynamics governed by R̂F̂
can then be obtained as an average over many realizations
of j�m,N�. We take the linear entropy S � Trr̂2 as a
useful additional measure of the purity of quantum states
and hence of the effect of decoherence.

Numerical studies show that for r , 0.05, coherent
control of quantum diffusion is hardly affected by the deco-
herence. For stronger decoherence, e.g., r � 0.15, phase
control is essentially lost. Examination of the correspond-
ing values of S�t � 60T � shows that this is consistent
with maintenance of control when the decoherence is suf-
ficiently small so that S�t � 60T � . 0.4. Sample results
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FIG. 4. As in Fig. 1b but in the presence of (a) modest deco-
herence and (b) stronger decoherence.

are shown in Fig. 4 where we plot the time dependence
Ẽ versus the time in the presence of small decoherence
(Fig. 4a, r � 0.05) and of appreciable decoherence
(Fig. 4b, r � 0.15). Both panels refer to the case of
stronger chaos. Comparison of Fig. 4a with the deco-
herence-free dynamics in Fig. 1b shows that control is
still significant, but decoherence is beginning to have an
effect insofar as Ẽ at t � 60T is larger in Fig. 4a than
in Fig. 1b. That is, the results show a slight tendency
towards the classical behavior. In the case of stronger
decoherence (Fig. 4b) phase control is greatly reduced
and long time linear diffusive growth of Ẽ is observed. A
careful examination of Fig. 4b suggests that phase control
persists until t � 20T when the slopes of the dashed and
solid curves become virtually identical. However, the
slopes of these curves are still significantly less than those
in Fig. 3b, suggesting that quantum coherence is still
maintained at these longer times. In essence, it appears
that phase control over the diffusion rate vanishes before
quantum coherence is completely destroyed.

Note, finally, that the possibility of control does not rely
heavily on the specific choice of basis states [11]. For
example, we have also obtained extensive phase control
by adding together either negative parity real basis states
sin�mu��

p
p or by adding together positive parity states

cos�mu��
p

p. Since the states sin�mu��
p

p satisfy the
boundary condition of an infinitely deep square well po-
tential V �u� with V �0� � V �2p� � 1` and since the dy-
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namics of a kicked particle in a well is similar to the kicked
rotor for similar initial states [12], this indicates that one
can also demonstrate coherent control of chaotic diffu-
sion using superpositions of Hamiltonian eigenstates of a
kicked particle in a potential well.

A number of possible experimental demonstrations of
the proposed control scenario are evident. For example,
the kicked diatomic molecule CsI [6,13] is a promising
molecular system for demonstrating controlled quantum
chaotic diffusion. In this case, preliminary controlled laser
excitation could be used to prepare the desired initial su-
perposition state (which are here superpositions of jJ,M�
and jJ 0,M�, where J and J 0 are the angular momentum
and M is their projection on the z axis) and to vary b.
Alternatively, one can utilize the square well analogy de-
scribed above to experimentally study kicked dynamics of
a particle in a well. By contrast, implementation of the
atom-optics approach [14] to studies of control appears
more difficult, insofar as it is necessary to prepare initial
quantum superposition states, a considerable extension of
previous work [15].

This work was supported by the U.S. Office of Naval
Research and the Natural Sciences and Engineering Re-
search Council of Canada. We thank Professor Aephraim
Steinberg for discussions on the atom-optics approach to
d kicked dynamics.

[1] G. Casati and B. Chirikov, Quantum Chaos: Between Or-
der and Disorder (Cambridge University Press, New York,
1995).

[2] M. Shapiro and P. Brumer, Adv. At. Mol. Opt. Phys. 42,
287 (2000); P. Brumer and M. Shapiro, Sci. Am. 272,
No. 3, 34 (1995).

[3] D. L. Shepelyansky, Physica (Amsterdam) 28D, 103
(1987).

[4] For example, C. Jaffe and P. Brumer, J. Chem. Phys. 82,
2330 (1985).

[5] F. Haake, Quantum Signatures of Chaos (Springer-Verlag,
Berlin, 1992).

[6] J. Gong and P. Brumer (to be published).
[7] G. Casati, I. Guarneri, F. M. Izrailev, and R. Scharf, Phys.

Rev. Lett. 64, 5 (1990).
[8] B. G. Klappauf et al., Phys. Rev. Lett. 81, 1203 (1998);

H. Ammann et al., Phys. Rev. Lett. 80, 4111 (1998).
[9] E. Ott, T. M. Antonsen, Jr., and J. D. Hanson, Phys. Rev.

Lett. 53, 2187 (1984).
[10] P. Facchi, S. Pascazio, and A. Scardicchio, Phys. Rev. Lett.

83, 61 (1999).
[11] We have also obtained similar control results with cosu in

Eq. (1) replaced by cos�u 1 p�10�, which gives a Hamil-
tonian that does not conserve parity.

[12] R. Sankaranarayanan, A. Lakshminarayan, and V. B.
Sheorey, preprint nlin 0005035.

[13] R. Blümel, S. Fishman, and U. Smilansky, J. Chem. Phys.
84, 2604 (1986).

[14] R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev. A
45, R19 (1992).

[15] F. L. Moore et al., Phys. Rev. Lett. 75, 4598 (1995).


