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Maintenance and Suppression of Chaos by Weak Harmonic Perturbations: A Unified View
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General results concerning maintenance or enhancement of chaos are presented for dissipative sys-
tems subjected to two harmonic perturbations (one chaos inducing and the other chaos enhancing). The
connection with previous results on chaos suppression is also discussed in a general setting. It is demon-
strated that, in general, a second harmonic perturbation can reliably play an enhancer or inhibitor role
by solely adjusting its initial phase. Numerical results indicate that general theoretical findings concern-
ing periodic chaos-inducing perturbations also work for aperiodic chaos-inducing perturbations, and in
arrays of identical chaotic coupled oscillators.
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The problems of suppressing chaos by small periodic
perturbations [1–6] and (to a lesser degree) preserving
transient chaos by small infrequent parameter perturba-
tions [7–9] has attracted a great deal of attention in recent
years. Although such scientific areas as biology [10,11]
and optics [3,12] present numerous situations where
chaotic dynamics can be useful or undesirable (depending
upon the specific problem considered), and in other
areas, such as fluid mixing [13] and secure information
processing [14], it is desirable for chaos to be generated,
enhanced, and controlled during the process, the two
aforementioned problems have not been considered as yet
in the framework of a unified technique [15]. The aim
of this Letter is to discuss a general theoretical method
for the maintenance or suppression of chaos in non-
autonomous systems by solely varying the initial phase
of an applied second perturbation. Maintenance of chaos
means increasing the duration of a chaotic transient or
passing from transient to steady chaos.

Let us assume that a general nonautonomous system
exhibits transient (steady) chaos and that we wish to main-
tain (intensify, i.e., to increase the leading Lyapunov expo-
nent) or suppress the chaos by applying a (usually) small,
harmonic and resonant, perturbation. The basic idea is to
properly choose its amplitude (depending on the resonance
order) to drive the system to the threshold of chaos, and
then to adjust its initial phase to enhance or suppress the
chaos. Analytically, the method can be discussed by con-
sidering a simple model of an unstable limit cycle affected
by two weak resonant perturbations

xn11 � �m 1 ´� fn 1 hgn��xn , (1)

with m . 1, h , 1, fn �
p

2 cosn, gn �
p

2 cos�n 1

C�, i.e., for simplicity, by choosing the main resonance
case. A similar recursion relation with h � 0 is con-
sidered in Ref. [2]. Note that � fn� � �gn� � 0, � f2

n� �
�g2

n� � 1, and � fngn� � cosC, angular brackets denoting
the average over n. To study the effect of the two weak
perturbations, one calculates the Lyapunov exponent (LE)
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for ´ fi 0: l � Re�Ln�m 1 ´� fn 1 hgn���. For small
´, the LE becomes

l � Lnm 2
1
2

µ
´

m

∂2

�1 1 h2 1 2h cosC� 1 O�´3� .

(2)

To clarify the effect of the second resonant perturbation,
gn, on the reduction or enhancement of instabilities
(negative or positive LE, respectively), let us consider
that, in the absence of the second perturbation (h � 0),
we are in a weakly unstable initial state Lnm * 1

2 �´�m�2

such as l � l1�h � 0� 	 Lnm 2 1
2 �´�m�2 * 0. Then,

for small fixed h fi 0, the LE l � l1�h � 0� 2
1
2 �´�m�2h�h 1 2 cosC� decreases when h 1 2 cosC >

0 and, in some range of C, may become negative,
thus stabilizing x — the optimal value of C for sta-
bilization being C � Cstab

opt 	 0. Contrarily, the LE
increases when h 1 2 cosC , 0 so that the initial phase
C � Cinstab

opt 	 p yields the largest positive LE. Note that
for h 
 hthreshold 	 �´�m�21�2l1�h � 0��1�2 we obtain
maximum-range intervals �Cstab

opt 2 DCmax, Cstab
opt 1

DCmax�, �Cinstab
opt 2 DCmax, Cinstab

opt 1 DCmax�, of per-
mitted initial phase for stabilization and strengthening of
instabilities, respectively (DCmax � p�2). Similarly, for
h . hthreshold, one sees that the corresponding ranges
have shrunk, i.e., DCmax , p�2.

To provide a rigorous formulation of the method and
results, let us consider the wide and important class of
dissipative systems

ẍ 1
dU�x�

dx
� 2d�x, �x� 1 gc�x, �x�fc�t�

1 gs�x, �x�fs�t� , (3)

where U�x� is a nonlinear potential, 2d�x, �x� is a general
damping force, gc�x, �x�fc�t� is the chaos-inducing per-
turbation, while gs�x, �x�fs�t� is an as yet undetermined
suitable chaos-enhancing/suppressing perturbation, with
fc�t�, fs�t� being harmonic functions with frequencies
v, V, and initial phases 0, C, respectively. Moreover,
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let us assume that the system (3) satisfies Melnikov’s
method (MM) requirements [16]; i.e., the time-periodic
and damping terms are small amplitude perturbations of
the underlying conservative system ẍ 1 dU�x��dx � 0
which has a separatrix. The application of MM to Eq. (3)
gives us the generic Melnikov function (MF) M6

h,h0�t0� �
2D 6 A har�vt0� 1 B har0�Vt0 1 F

6
h,h0�, where har�x�

means indistinctly cos�x� or sin�x�, and D, A, B, are
different non-negative functions of the corresponding
parameters for each particular system. As the phase
and initial time t0 are not fixed, we can study the
simple zeros of M6

h,h0�t0� by choosing quite freely the
harmonic functions. Thus we can consider, e.g., the MF
M�t0� � 2D 1 A sin�vt0� 2 B sin�Vt0 1 C� to es-
tablish the general results. It is commonplace to note
that the simple zeros of the MF give rise to transversal
homoclinic points and chaotic phenomena (Smale horse-
shoes). The mechanism for taming chaos is then the
frustration of a homoclinic (or heteroclinic) bifurcation
(i.e., no horseshoe) [17], while the maintenance of chaos
is achieved by moving the system from the homoclinic
tangency condition even more than in the initial situation
with no second perturbation. Let us suppose that, in
the absence of any second perturbation �B � 0�, the
associated MF M0�t0� � 2D 1 A sin�vt0� changes sign
at some t0, i.e., D < A. Figure 1 shows a plot of M0�t0�.
If we now let the second perturbation act on the system
such that B < A 2 D, this relationship represents a
sufficient condition for M�t0� to change sign at some t0.
Thus, a necessary condition for M�t0� to always have
the same sign [M�t0� , 0] is B . A 2 D 	 Bmin. It
was previously demonstrated [6] that a sufficient condi-
tion for B . Bmin to also be a sufficient condition for
suppressing chaos is V � pv (resonance condition),
B < Bmax 	 A�p2, p an integer, and that M0�t0� and
2Bmin,max sin�Vt0 1 C� to be in opposition (see Fig. 1).
This last condition yields the optimal suppressory values
of the initial phase, C

sup
opt, in the sense that they allow

the widest amplitude ranges for the chaos-suppressing
perturbation. Now we see that imposing M0�t0� to be
in phase with 2Bmin,max sin�Vt0 1 C� is a sufficient
condition for M�t0� to change sign at some t0 (see Fig. 1).
This condition provides the optimal enhancer values of
the initial phase, Cenh

opt , in the sense that M�t0� presents
its highest maximum at Cenh

opt ; i.e., one obtains the
maximum gap from the homoclinic tangency condition.
Observe that, for a given homoclinic orbit forming (part
of) a separatrix, we have in general [i.e., for any MF
M6

h,h0�t0�] that jC
sup
opt 2 Cenh

opt j � p for each resonance
order. It is straightforward to demonstrate [18] that for
B � Bmin there always exists a maximum-range interval
�Cenh

opt 2 DCmax, Cenh
opt 1 DCmax� of permitted initial

phases for enhancement of chaos in the sense that, for
values of C belonging to that interval, the maxima of
M�t0� are higher than those of M0�t0�. Similarly, for
B � Bmax there always exists a different maximum-
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FIG. 1. Optimal suppressor and enhancer effects of
a second perturbation on the initial Melnikov function
M0�t0� 	 2D 1 A sin�vt0� (solid line) for the main reso-
nance V � v case. (a) Functions 2Bmin sin�vt0 1 C

sup
opt �

(black dotted line) and 2Bmin sin�vt0 1 Cenh
opt � (grey dotted

line) vs t0. (b) Functions 2Bmax sin�vt0 1 C
sup
opt � (black dotted

line) and 2Bmax sin�vt0 1 Cenh
opt � (grey dotted line) vs t0.

range interval �Cenh
opt 2 DC0

max, Cenh
opt 1 DC0

max� of
allowed initial phases for maintenance of chaos, such
as DC0

max > DCmax, which is a consequence of the
dissipation. It must be emphasized that the definition of
Cenh

opt is general; i.e., it refers to any resonance and for
any MF M6

h,h0�t0�. For general separatrices, i.e., formed
by several heteroclinic and (or) homoclinic loops, the
above scenario holds for each homoclinic (heteroclinic)
orbit. However, it is common to find that the different
homoclinic (heteroclinic) orbits of a given separatrix
yield distinct Cenh

opt values. This is a consequence of the
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survival of the symmetries existing in the absence of the
second perturbation [19]. Thus, the actual scenario is
usually more complicated. For example, let C

sup
opt,r , C

sup
opt,l

be the optimal values associated with the right and left
homoclinic orbits, respectively, of a typical separatrix
with a “figure-of-eight” loop. It is straightforward to see
that the best chance for enhancing chaos should now be at
Cenh

opt � �Cenh
opt,r 2 C

enh
opt,l��2�mod2p�. The correspond-

ing values of Cenh
opt for the remaining topological types of

separatrices can be readily obtained [18].
Numerical simulations of different systems show ex-

cellent agreement with theoretical predictions. Figure 2
depicts the results for a universal escape oscillator [20]

FIG. 2. Normalized escape probability P�h��P�h � 0� vs
initial phase C for the system ẍ 1 x 2 x2 � 2d �xj �xj 1
hx2 cos�Vt 1 C� 1 gfc�t� 1 fnoise�t�, where fc�t� is a
chaos-inducing perturbation and fnoise�t� is a random force,
for several values of h: (�) h � 0.07, (�) h � hmin �
0.223 323, (�) h � 0.3, (�) h � hmax � 0.549 748, (�)
h � 0.7. Fixed parameters: d � 0.1, v � 0.85. (a) Periodic
chaos-inducing perturbation fc�t� � cos�vt�, fnoise�t� � 0,
g � 0.05, V � v. (b) Aperiodic chaos-inducing perturbation
fc�t� � siny�t� with y�t� a chaotic response from the system
ÿ 1 siny � 20.1 �y 1 2 cos�2vt�, fnoise�t� � 0, V � v. Here
g � 0.1 for having an initial escape situation similar to that
of the case (a). (c) Periodic chaos-inducing perturbation in the
presence of noise fc�t� � cos�vt�, fnoise�t� � sinF�t� with
F�t� a Gaussian random phase, g � 0.05, V � v.
where the separatrix is formed by a single homoclinic
loop and the second perturbation is parametric. In
the absence of the second perturbation (h � 0), the
system presents an erosion of the safe basin (union of
the bounded attractors) due to encroachment by the
basin of the attractor at infinity (escaping basin) [21]
for the parameters indicated in the caption to Fig. 2.
Consider first the case of a harmonic chaos-inducing
perturbation fc�t� � cos�vt� [cf. Fig. 2(a)]. The theoreti-
cal predictions are h [ �0.223 323, 0.549 748�, C

sup
opt �

p�Cenh
opt � 0� for the inhibition (enhancement) of chaotic

escape. The asymptotic behavior of the normalized escape
probability, P�h��P�h � 0�, as C ! Cenh

opt indicates
that the nonescaping basin has been (almost) completely
destroyed. Figure 2(b) shows the corresponding results
for an aperiodic chaos-inducing perturbation whose power
spectrum exhibits a strong peak at frequency v. Naively,
one would expect that P�h��P�h � 0� is insensitive to
C, provided that fc�t� has no definite phase in this case.
However, the existence of a sharp Fourier component,
with a sufficiently high power, seems to be enough to
permit the resonant second perturbation to reliably act
as an inhibitor or enhancer perturbation. This represents
a new aspect of the robustness in the maintenance and
suppression of chaos by weak harmonic perturbations,
which extends the known robustness against external
noise— as in the case considered in Fig. 2(c). Com-
parison of Figs. 2(a) and 2(b) clearly indicates that the
suppressory effectiveness of the second perturbations is
less for an aperiodic chaos-inducing perturbation than for
a periodic one, as expected. Additional numerical studies
on other systems [18] indicates that the aforementioned
hyper-robustness of the method discussed here is generic.

Figure 3 shows the results corresponding to a two-well
Duffing oscillator, as an example of a system having
a separatrix formed for several homoclinic orbits. In
the absence of the second perturbation �h � 0�, the
system presents a strange attractor with a leading LE
l1�h � 0� � 0.127 6 0.001 (bits�s) (dotted line in
Fig. 3). The theoretical predictions, for the main reso-
nance and the remaining parameters indicated in the
caption to Fig. 3, are h [ �0.094 55, 0.4336�, C

sup
opt,r � 0,

C
sup
opt,l � p�Cenh

opt,r � p�2, Cenh
opt,l � 3p�2� for the sup-

pression (enhancement) of chaos (cf. the above discussion
and Ref. [6]). The regularized response in the suppressory
ranges of C is invariably a period-1 solution (note the
remarkable constant value of the LE). To test a certain
aspect of the robustness of the method vis-à-vis experi-
mental realization one can assume that the initial phase
of the chaos-inducing perturbation is affected by random
fluctuations, as in the case shown in Fig. 3(b). Finally, it
is worth mentioning that similar results are observed [18]
in one-dimensional arrays of coupled chaotic nonlinear
oscillators where only the two ends are subjected to the
suitable second perturbation — as in the case considered
in Fig. 3(c).
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FIG. 3. (a) Leading LE vs normalized initial phase C�p
for the two-well Duffing oscillator ẍ 2 x 1 4x3 � 2d �x 1
g cos�vt� 2 4hx3 cos�Vt 1 C�, d � 0.154, g � 0.095, v �
V � 1.1, h � �hmin 1 hmax��2 � 0.169 525. Dotted line
represents the LE for h � 0. (b) Bifurcation diagram for
the variable dx�dt vs C�p for the two-well Duffing os-
cillator in (a) with the substitution vt ! vt 1 b sinF�t�,
b � 0.314 15 � p�10, F�t� a Gaussian random initial
phase, and the remaining parameters as in (a). (c) Bifur-
cation diagram for the variable dx3�dt vs C�p for the
homogeneous chain of forced damped two-well Duffing oscil-
lators governed by the equation ẍn 2 xn 1 4x3

n � 2d �xn 1
k�xn11 2 2xn 1 xn21� 1 g cos�vt�, where n � 1, . . . , 5, and
where only the ends are subjected to a second perturbation as
in the case (a). Also plotted (�) is the correlation function
C�t� �

2
N�N21�

P
�ij� cos�xi�t� 2 xj�t��, N � 5, where the

summation is over all pairs of oscillators. Coupling k � 0.1
and the remaining parameters as in the case (a).

In summary, this theoretical and numerical study
showed the initial phase of a second harmonic pertur-
bation to play a switching role in the suppression and
1740
enhancement of chaos in nonautonomous systems. In view
of the generality of this result, and the great robustness,
scope, and flexibility of the technique, one can expect it
to be quite readily testable by experiment. The results
also confirm and extend the close relationship between
the responses of a given system to aperiodic and periodic
signals which have been described for the synchronization
phenomenon [22]. The method discussed in this work can
be directly applied to a number of important problems:
control of Josephson junction arrays, mixing around a
vortex in fluid mechanics, and chaotic oscillations of a
satellite on an elliptic orbit are some examples.
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