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Trajectories in Phase Diagrams, Growth Processes, and Computational Complexity:
How Search Algorithms Solve the 3-Satisfiability Problem
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Decision and optimization problems typically fall into one of two categories for any particular solving
algorithm. The problem is either solved quickly (easy) or demands an impractically long computational
effort (hard). Here we show that some characteristic parameters of problems can be tracked during
a run of the algorithm defining a trajectory through the parameter space. Focusing on 3-satisfiability,
a recognized representative of hard problems, we analyze trajectories generated by search algorithms.
These trajectories can cross well-defined phases, corresponding to domains of easy or hard instances,
and allow one to successfully predict the times of resolution.
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Consider a set of N Boolean variables and a set of M �
aN constraint clauses. Each clause is the logical OR of
three variables or of their negations; see Fig. 1. Then, try
to figure out whether or not there exists an assignment of
variables satisfying all clauses (called solution) [1].

This problem is termed 3-satisfiability (3-SAT), and is
among the most difficult ones to solve as its size N be-
comes large. A fundamental conjecture of computer sci-
ence is that no method exists to solve 3-SAT efficiently
[2], i.e., in time growing at most polynomially with N . In
practice, one therefore resorts to methods that need, a pri-
ori, exponentially large computational resources. One of
these algorithms, the ubiquitous Davis-Putnam-Loveland-
Logemann (DPLL) solving procedure [1,3,4], is illustrated
in Fig. 1. DPLL operates by trial and error, the sequence
of which can be graphically represented as a search tree
made of nodes connected through edges (Fig. 1). Ex-
amples of search trees for satisfiable (sat) or unsatisfi-
able (unsat) instances are shown in Fig. 2. Computational
complexity is the amount of operations performed by the
solving algorithm. We follow the convention that it is
measured by the size of the search tree, i.e., the number
of nodes.

Complexity may vary enormously with the instance, the
set of clauses, under consideration. To understand why in-
stances are easy or hard to solve, computer scientists have
focused on model classes of 3-SAT instances. Probabilistic
models that define distributions of random instances con-
trolled by few parameters are particularly useful in shed-
ding light on the onset of complexity. An example that has
attracted a lot of attention over the past years is random
3-SAT: all clauses are drawn randomly and each variable
negated or left unchanged with equal probabilities. Experi-
ments [4,5] and theory [6] indicate that clauses can almost
surely always (respectively, never) be simultaneously sat-
isfied if a is smaller (respectively, larger) than a critical
threshold aC � 4.3 as soon as M, N go to infinity at fixed
ratio a. This phase transition [6,7] is accompanied by
a drastic peak in hardness at threshold [4,5]; see Fig. 3.
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A complete understanding of this pattern of complexity is
lacking so far.

In this Letter, we argue that search algorithms induce a
dynamical evolution of the computational problem to be
solved. We shall show how this complex, non-Markovian
dynamics is closely related to growth processes. Concepts
and tools from statistical mechanics allow one to under-
stand and predict analytically computational complexity.
For the sake of clarity, we shall report technical details in
another, extended paper [8].

As shown in Fig. 1, the action of DPLL on an instance of
3-SAT causes the reduction of 3-clauses to 2-clauses. We
use a mixed 2 1 p-SAT distribution [7], where p is the
fraction of 3-clauses, to model what remains of the input
instance at a node of the search tree. Using experiments
and methods from statistical mechanics [7], the threshold
line aC�p�, separating sat from unsat phases, may be ob-
tained with the results shown in Fig. 4. The phase diagram
of 2 1 p-SAT is the natural space in which the DPLL dy-
namic takes place. An input 3-SAT instance with ratio a

shows up on the right vertical boundary of Fig. 4 as a point
of coordinates �p � 1, a�. Under the action of DPLL,
the representative point moves aside from the 3-SAT axis
and follows a trajectory. The location of this trajectory in
the phase diagram allows a precise understanding of the
search tree structure and of complexity. We consider the
trajectories generated by DPLL using the generalized unit
clause (GUC) heuristics [9] (Fig. 1); however, our calcu-
lation could be repeated for other rules [4,5,9,10].

At sufficiently small ratios a , aL � 3.003, DPLL
easily finds a solution [9,10]. The search tree has a unique
branch, i.e., a sequence of edges joining the top node to
the extremity. This branch grows as the fraction t of vari-
ables assigned by DPLL increases and terminates with a
solution (Fig. 2A). Each node along the branch carries a
2 1 p-SAT instance with characteristic parameters p and
a. The knowledge of p and a as functions of the “depth”
t of the node, first established by Chao and Franco [9],
allows us to draw the trajectory followed by the instance
© 2001 The American Physical Society
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FIG. 1. Example of 3-SAT instance and Davis-Putnam-
Loveland-Logemann resolution. Step 0: The instance consists
of M � 5 clauses involving N � 4 variables x, y, w, and z,
which can be assigned to true �T� or false �F�. w̄ means (NOT
w) and _ denotes the logical OR. The search tree is empty.
Step 1: DPLL randomly selects a variable among the shortest
clauses and assigns it to satisfy the clause it belongs to, e.g.,
w � T (splitting with the generalized unit clause— GUC—
heuristic) [9]. A node and an edge symbolizing, respectively,
the variable chosen (w) and its value �T� are added to the
tree. Step 2: The logical implications of the last choice are
extracted: clauses containing w are satisfied and eliminated,
clauses including w̄ are simplified, and the remaining ones are
left unchanged. If no unitary clause (i.e., with a single variable)
is present, a new choice of variable has to be made. Step 3:
Splitting takes over. Another node and another edge are added
to the tree. Step 4: Same as step 2 but now unitary clauses are
present. The variables they contain have to be fixed accordingly.
Step 5: The propagation of the unitary clauses results in a
contradiction. The current branch dies out and gets marked
with C. Step 6: DPLL backtracks to the last split variable (x),
inverts it �F� and creates a new edge. Step 7: Same as step 4.
Step 8: The propagation of the unitary clauses eliminates all
the clauses. A solution S is found and the instance is satisfiable.
For an unsatisfiable instance, unsatisfiability is proven when
backtracking (see step 6) is not possible anymore, since all
split variables have already been inverted. In this case, all the
nodes in the final search tree have two descendent edges and
all branches terminate by a contradiction C.

under the action of DPLL in Fig. 4. The trajectory, indi-
cated by a light dashed line, first heads to the left and then
reverses to the right until reaching a point on the 3-SAT
axis at a small ratio without ever leaving the sat region.
Further action of DPLL leads to a rapid elimination of the
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FIG. 2. Types of search trees generated by the DPLL solv-
ing procedure. (a) Simple branch: the algorithm easily finds a
solution without ever backtracking. (b) Dense tree: in the ab-
sence of solution, the algorithm builds a “bushy” tree, with many
branches of various lengths, before stopping. (c) Mixed case,
branch 1 tree: if many contradictions arise before reaching a
solution, the resulting search tree can be decomposed in a single
branch followed by a dense tree. The junction G is the highest
backtracking node reached back by DPLL.

remaining clauses and the trajectory ends up at the lower
right corner S, where a solution is achieved. Thus, in the
range of ratios a , aL � 3.003, 3-SAT is easy to solve:
the computational complexity scales linearly with the size
N (Fig. 3).

For ratios above threshold (a . aC � 4.3), instances
almost never have a solution but a considerable amount of
backtracking is necessary before proving that clauses are
incompatible. As shown in Fig. 2B, a generic unsat tree
includes many branches. The number of branches, B, is
related to the number of nodes, Q, through the relation
Q � B 2 1 valid for any complete tree; check Fig. 2B.
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FIG. 3. Complexity of 3-SAT solving for three problem sizes
and averaged over 10 000 randomly drawn samples.
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FIG. 4. Phase diagram of 2 1 p-SAT and dynamical trajecto-
ries of DPLL. The threshold line aC�p� (bold full line) sepa-
rates sat (lower part of the plane) from unsat (upper part) phases.
Extremities lie on the vertical 2-SAT (left) and 3-SAT (right)
axes at coordinates �p � 0, aC � 1� and �p � 1, aC � 4.3�,
respectively. Departure points for DPLL trajectories are located
on the 3-SAT vertical axis and the corresponding values of a are
explicitly given. Dashed curves represent tree trajectories in the
unsat region (thick lines, black arrows) and branch trajectories
[9] in the sat phase (thin lines, empty arrows). Arrows indi-
cate the direction of “motion” along trajectories parametrized
by the fraction t of variables set by DPLL. For small ratios
a , aL, branch trajectories remain confined in the sat phase
and end in S of coordinates �1, 0�, where a solution is found.
At aL � 3.003, the single branch trajectory hits tangentially the
threshold line in T of coordinates �2�5, 5�3� (T depends a priori
on the heuristics used, but lies very close to the tricritical point
of Ref. [7]; see [8]). In the intermediate range aL , a , aC ,
the branch trajectory intersects the threshold line at some point
G (that depends on a). A dense tree then grows in the unsat
phase, as happens when 3-SAT departure ratios are above thresh-
old a . aC � 4.3. The tree trajectory halts on the dot-dashed
curve a � 1.259��1 2 p� where the tree growth process stops
[14]. At this point, DPLL has reached back the highest back-
tracking node in the search tree, that is, the first node when
a . aC , or node G for aL , a , aC . In the latter case, a
solution can be reached from a new descending branch while,
in the former case, unsatisfiability is proven; see Fig. 2.

Complexity grows exponentially with N [11], so it is
convenient to define its logarithm v through Q � 2Nv .
We experimentally directly counted Q or, alternatively, B,
and averaged the corresponding logarithms v over a large
number of instances. Results have then be extrapolated to
the N ! ` limit [8] and are reported in Table I.

We have analytically computed v as a function of a,
extending to the unsat region the probabilistic analysis of
DPLL. The search tree of Fig. 2B is the output of a se-
quential process: nodes and edges are added by DPLL
through successive descents and backtrackings. We have
imagined a different building up that results in the same
complete tree but can be mathematically analyzed: the tree
grows in parallel, layer after layer. A new layer is added
1656
TABLE I. Logarithm of the complexity v from measures of
search tree sizes (number of nodes, Q, and of branches, B)
and theory [12]. Experimental results for a � 3.5 (sat phase)
are compared to the complexity of the unsat tree built from
G; v̂ � 0.035 is obtained from v̂ � v̂G�1 2 tG�, where tG �
0.19 is the fraction of variables assigned by DPLL at point G;
see text. At large a, each variable appears in many clauses
and contradictory clauses are detected earlier by DPLL. Tree
trajectories are short, and refutation trees, small. Complex-
ity is found to scale asymptotically as v̂ � �3 1

p
5� �ln��1 1p

5��2��2��6 ln2��a � 0.292�a; this result seems to be exact
[8,16].

Initial Experiments Theory
Ratio a log2Q log2B v̂

20 0.0153 6 0.0002 0.0151 6 0.0001 0.0152
15 0.0207 6 0.0002 0.0206 6 0.0001 0.0206
10 0.0320 6 0.0005 0.0317 6 0.0002 0.0319
7 0.0482 6 0.0005 0.0477 6 0.0005 0.0477
4.3 0.089 6 0.001 0.0895 6 0.001 0.0875

3.5 0.034 6 0.003 0.035
G 0.040 6 0.002 0.041 6 0.003 0.044

by assigning, according to DPLL heuristic, one more vari-
able along each living branch. As a result, a branch may
split (case 1), keep growing (case 2), or carry a contradic-
tion and die out (case 3). Cases 1, 2, and 3 are stochastic
events, the probabilities of which depend essentially on the
characteristic parameters �p, a� defining the 2 1 p-SAT
instance carried by the branch, and on the depth (fraction of
assigned variables) t in the tree. This Markovian approxi-
mation permits one to write an evolution equation for the
logarithm v�p, a; t� of the average number of branches
with parameters p, a as the depth t increases,

≠v

≠t
� H

∑
p, a,

≠v

≠p
,
≠v

≠a
, t

∏
, (1)

and H incorporates the details of the splitting heuristics
[8,12]. Partial differential equation (1) is analogous to
growth processes encountered in statistical physics [13].
The surface v, growing with “time” t above the bidi-
mensional plane p, a, describes the whole distribution
of branches. The average number of branches at depth
t in the tree equals B�t� �

R
dp da 2Nv� p,a;t� � 2Nv��t�,

where v��t� is the maximum over p, a of v�p, a; t�
reached in p��t�, a��t�. In other words, the exponentially
dominant contribution to B�t� comes from branches car-
rying 2 1 p-SAT instances with parameters p��t�, a��t�,
which define the tree trajectories in Fig. 4. The hyperbolic
line indicates the halt points, where contradictions prevent
dominant branches from further growing [14]. Along the
tree trajectory, v��t� grows from 0, on the right verti-
cal axis, up to some final positive value, v̂, on the halt
line. v̂ is our theoretical prediction for the logarithm of
the complexity (divided by N). Values of v̂, obtained for
4.3 , a , 20 by solving Eq. (1) compare very well with
numerical results (Table I).
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The intermediate region aL , a , aC juxtaposes the
two previous behaviors; see tree Fig. 2C. The branch
trajectory, started from the point �p � 1, a� correspond-
ing to the initial 3-SAT instance, hits the critical line
ac�p� at some point G with coordinates �pG , aG� after
NtG variables have been assigned by DPLL; see Fig. 4.
The algorithm then enters the unsat phase and generates
2 1 p-SAT instances with no solution. A dense subtree,
that DPLL has to go through entirely, forms beyond
G till the halt line (Fig. 4). The size of this subtree,
2N�12tG�v̂G , can be analytically predicted from our theory.
G is the highest backtracking node in the tree (Fig. 2C)
reached back by DPLL, since nodes above G are located
in the sat phase and carry 2 1 p-SAT instances with
solutions. DPLL will eventually reach a solution. The
corresponding branch (rightmost path in Fig. 2C) is highly
nontypical and does not contribute to the complexity,
since almost all branches in the search tree are described
by the tree trajectory issued from G (Fig. 4). We have
checked experimentally this scenario for a � 3.5. The
coordinates of the average highest backtracking node,
�pG � 0.78, aG � 3.02�, coincide with the analytically
computed intersection of the single branch trajectory and
the critical line ac�p�. As for complexity, experimental
measures of v from 3-SAT instances at a � 3.5, and of
vG from 2 1 0.78-SAT instances at aG � 3.02, obey the
expected identity v � vG�1 2 tG� and are in very good
agreement with theory (Table I). Therefore, the structure
of search trees for 3-SAT reflects the existence of a critical
line for 2 1 p-SAT instances.

In conclusion, we have shown that statistical physics is
useful to study the solving complexity of branch and bound
algorithms [1,2] applied to hard combinatorial problems.
The phase diagram of Fig. 4 affords a qualitative under-
standing of the probabilistic complexity of DPLL variants
on random instances. This view may reveal the nature of
the complexity of search algorithms for SAT and related
NP-complete problems [2,15]. In the sat phase, branch
trajectories are related to polynomial time computations
while in the unsat region, tree trajectories lead to exponen-
tial calculations. Depending on the starting point (ratio a

of the 3-SAT instance), one or a mixture of these behaviors
is observed. Figure 4 furthermore gives some insights to
improve the search algorithm. In the unsat region, trajec-
tories must be as horizontal as possible to minimize their
length but resolution is necessarily exponential [11]. In
the sat domain, heuristics making trajectories steeper could
avoid the critical line aC�p� and solve 3-SAT polynomi-
ally up to threshold.
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