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Modeling Heart Rate Variability in Healthy Humans: A Turbulence Analogy
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Many complex systems share similar statistical characteristics. In this Letter, a turbulence analogy
is proposed for the long-term heart rate variability of healthy humans. Based on such an analogy, the
equivalence of an inertial range is found and a cascade model, which captures the statistical properties
of the heart rate data, is given.
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In healthy humans, cardiovascular regulation results in
complex sinus rhythm which manifests in the fluctuation
of a heart beat interval known as the RR interval (RRi).
The RRi fluctuation, also referred to as heart rate variabil-
ity (HRV), is best known for its 1�f-like power spectrum
[1]. This suggests scale invariance in HRV (power law
spectrum is a necessary condition for scale invariance [2])
and the departure of the homeostatic viewpoint of the car-
diovascular regulation in healthy humans. The nature of
biological signals is known to be highly complex [3,4].
From the RRi increment distribution in healthy humans,
evidence of multiple scaling was reported [5,6]. Ivanov
et al. showed for the first time a multifractal singularity
spectrum in normal sinus rhythm [7]. These results sug-
gest interesting similarities between the qualitative feature
of RRi fluctuations and other complex phenomena. In
this work, ideas of structure function and cascade from
fully developed turbulence (FDT) were used to character-
ize long-term daytime HRV in healthy humans. The objec-
tives of our study are the modest ones: provide evidence
of and model the “turbulence” characteristics of HRV.

Two databases were used to analyze the turbulence anal-
ogy. The first (DB1) consists of the 24-hour RRi record-
ing of ten healthy (active) young adults conducting normal
daily activities [6]. Because of the relatively high activity
level of these subjects, the activation of the sympathetic
system (which accelerates heart rate) and the reduction of
vagal tone (which decelerates heart rate) are evident from
the power contents in the low and high frequencies of the
spectrum, respectively. To test if the analogy holds gener-
ally, we also looked into a second database (DB2) down-
loaded from the public domain [8], which, on average, has
a larger high frequency content in their data sets (Fig. 1a).
DB2 consists of 18 sets of 24-hour ambulatory electrocar-
diogram (ECG) recordings of normal sinus rhythm from
subjects who were referred to the ECG monitoring for
symptoms that turned out to be unrelated to cardiac rhythm
or that did not recur during the recording. The difference
in the high frequency content of the two databases further
allows us to draw implications of vagal influence on the
turbulence of HRV.

Qualitative similarities between HRV and FDT can be
demonstrated from a number of statistics. In addition to
0031-9007�01�86(8)�1650(4)$15.00
the 1�f-like power spectrum, both complex phenomena
exhibit (i) a stretch-exponential-like increment probability
density function (PDF) at the small time scale and a near
Gaussian increment at the large time scale and (ii) inter-
mittent bursts of large amplitude oscillation at irregular in-
tervals of the high-pass filtered RRi. These characteristics
can easily be found (Figs. 1b and 1c); see also [5,6].

To model these similarities, ideas of structure func-
tion and cascade were applied. Let r�t� denote the RRi
between the tth and �t 1 1�th heart beats and Dr�t� �
r�t 1 t� 2 r�t� be the RRi increment. The structure func-
tion is defined by Sq�t� � �jDr�t�jq�, where �?� denotes
the statistical average and q . 0 is a real number. It is of
immediate interest to formulate

Sq�t� � tz �q�. (1)

The Kolmogorov theory of FDT showed that z �q� � q�3
over the scales in inertial range, wherein a balance law
exists between the energy dissipation and energy injected
from the large scale [9,10]. Although there are discrepan-
cies between the experimental data and theory, the power
law Sq and the inertial range scales are valid descriptions
of the turbulence field. The structure function of the RRi
increment also exhibits power law behavior (Fig. 2a). Both
databases indicated an “inertial range” lying consistently
between �8 to �2048 heart beats. The different vagal
tones of the two databases did not affect the inertial range
since its dynamics lies mainly in the high frequency range
(,8 beats). The lower limit of the scaling range agrees
with the result in the literature, where a scaling range be-
ginning at around 10 heart beats was reported [11]. For
DB2, there appear oscillation superimposed on the power
law trend. In some cases, dominant harmonics can be
found in the oscillation, which reminds us of the log-
periodic behavior of the biological signal [3,4]. But this
property does not show up in all the data.

The exponent z �q� reveals some interesting properties
of the signal. For example, z �q� � 0 for a zero-mean,
stationary process with independent increments. For a de-
terministic and oscillatory signal, which is, in a sense, most
“nonstationary,” one has �jDr�t�jq� � �jDr�t�j�q for a
fixed q. This expression also holds for a narrowly distri-
buted increment. For example, the Gaussian increment
© 2001 The American Physical Society
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FIG. 1. (a) Group-averaged vagal indicator from DB1 and DB2, PH�Ptotal, where PH �
R

VH
s�v� dv, Ptotal �

R0.5
0 s�v� dv,

VH � �0.15 , v , 0.5�, and s�v� � j
R

r�t� exp�2ivt� dtj2; (b) PDF of Dr�t�, t � 1, 128, 2048 from a typical subject, and (c)
the high-passed r�t�. at the cutoff frequency 0.35 beat21 from a typical subject.
of the fractional Brownian motion (fBm) with a Hurst ex-
ponent a�2 yields �jDr�t�jq� � �jDr�t�j�q � tqa�2.
Hence, in the monoscale situation such as fBm one has
z �q� � qz �1�. For the more complicated multifractal, z �q�
is described by a concave function (z �q�00 , 0). Daytime
HRV showed such a property (Fig. 2b). A concave z �q�
is a result of the power law (1), in which case, z �q� log�t�
can be written as the second characteristic function of
q log	jDr�t�j
 and the prescribed property followed [12].
From the property of z �q�, multifractal of a continuous
spectrum of exponents is assumed. The support of the scal-
ing exponent can be studied by the Legendre transform of
z �q�. This yields two new functions: f�h�q�� and h�q� �
dz �q��dq, where f�h� is the Hausdorff dimension of the
support which scales locally as th [13]. Numerically, f�h�
is estimated from f�h� � infq�qh 2 z �q� 1 1�. The group-
averaged f�h� of DB1 and DB2 are shown in Fig. 3. The
f�h� of DB2 matches well the known result [7] (for q . 0).
Also, despite the difference in vagal influence, multifractal
nature remains in the two databases. The h values for DB1
are on average higher than DB2’s. This is consistent with
the orthostatic test results: the activation of sympathetic
system and the withdrawal of vagal tone increase the
absolute value of the spectral exponent [14].

Careful experimentations and theoretical studies in FDT
in the past resulted in generally accepted values for z �q�’s
of the velocity increment; e.g., z �q� � 0.37, 0.70, 1,
1.28, . . . for q � 1, 2, 3, 4, . . . [9,15,16]. For HRV, the
group-averaged z �q� are 0.134, 0.235, 0.311, 0.368, . . .
for DB1 and 0.097, 0.173, 0.231, 0.274, . . . for DB2.
Compared with the first few z �q�’s of FDT, the difference
is given roughly by a constant factor (�3.11 for DB1 and
�4.22 for DB2 for 1 # q # 4). It suggests

z �q�
z �p�

Ç
FDT

�
z �q�
z �p�

Ç
HRV

(2)

for some fixed integer p.
Equation (2) has an interesting implication in a more

general setting. Benzi et al. showed anomalous scaling in
FDT down to the Kolmogorov scale due to what they called
the extended self-similarity (ESS) [16]. The ratio zq,p �
z �q��z �p� characterizes ESS by describing the power law
relationship between different parts of the PDF’s at dif-
ferent t. For example, rare events contributing the tail
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FIG. 2. (a) Structure function from typical subjects [notice the log-periodic modulation in the second data set (1)]; (b) group-
averaged z �q�; and (c) group-averaged zq,3.
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FIG. 3. f�h� vs h.

of the PDF dominate the power law of Sq for large q,
and typical events at the origin of the PDF dominate that
of Sq for small q. For statistical reasons, it is desirable
to consider small p, q. The zq,p based on the group-
averaged z �q� converge to a close set of values: letting
p � 3 and q � 1 � 4, zq,3 � 0.43, 0.75, 1, 1.18 for DB1
and zq,3 � 0.42, 0.75, 1, 1.19 for DB2 (Fig. 2c). In FDT,
zq,3 of the velocity increment is the same as z �q� given
above since z �3� � 1. These results suggest that not only
HRV and FDT are qualitatively similar, but they are also
quantitatively “close” in the sense of ESS.

The similar statistics do not imply details of the complex
systems. But it does suggest that similar signal fluctuation
generating mechanisms may be in play. To generate a non-
stationary, multifractal field, Benzi et al. proposed using
wavelets to model the velocity in FDT based on a dyadic
cascade and power law wavelet coefficients [17]. Haus-
dorff and Peng proposed an 1�f model by adding Gaussian
components at different time scales [18]. Both models are
able to reproduce the desired statistics and generate mul-
tiscaled time series [6,17]. In general, intermittence and
nonstationarity are major components in complex signals
1652
[19,20]. While the former is best simulated multiplica-
tively, the latter is additive in nature. In FDT, Marshak
et al. proposed a bounded cascade to account for multipli-
cation in the large scale and additivity in the small scale
[20]. Based on these results, a procedure simulating the
“cascade” in daytime HRV is proposed: The first cas-
cade level is a flat field r0�t� � c0. A two-step procedure
is then followed and repeated: (a) divide the time domain
into random subintervals, and (b) multiply a random factor
to the field at the subinterval. Let the field after J cascades
be denoted as rJ�t�; then

rJ �t� � c0

JY
j�1

wj�t� , (3)

where wj is called the time scale component with �wj� � 1
and s

2
j � ��wj 2 1�2�. rJ�t� only updates its value at ran-

dom time variables t�J�
k ’s which in turn form the random

subintervals in (b). The number of such time intervals
Nj at the jth cascade level also describes the character-
istic time scale of wj�t�. For a self-similar process, it is
necessary that Rt�Nj� � �Nj11� where Rt . 1 is a con-
stant. In [20], wj � 1 6 fj , fj ! 0 as j ! `. For the
present case, sj decreases its value in j. Choosing ran-
dom weights wj and �t� j�

k � are attempts to model the time
varying nature of the cardiovascular system.

By construction, it is noted that the large (small) am-
plitude fluctuation is contributed by the large (small) time
scale components. The large scale introduced in the first
few cascades are generated multiplicatively, whereas the
small scale fluctuation is introduced to rJ�t� additively
since higher order terms are small due to the decreasing
sj . Also, the simulated data are bounded due to the de-
creasing sj . This implies boundedness of the increment,
which in turn sets an upper bound for z �q� in large q. Thus,
z �q� cannot be a linear function from a bounded cascade.

The model simulation (3) is based on three parameters
J, sj , and Rt and the probability laws of wj and �t� j�

k �.
In this study, J � 15 and Rt � 2 were used. The Gauss-
ian and uniform distributions were assumed for wj and t� j�

k ,
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FIG. 4. (a) Increment PDF of rJ �t� at t � 1 and t � 4096. The dashed line is the fit of a Gaussian PDF at t � 4096. (b) z �q�
of rJ �t�, and (c) the multifractal spectrum f�h� of rJ �t�.
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respectively. For very small sj , rJ�t� can be approximated
by a sum of Gaussian variables. It is thus monoscaled.
For large sj , the time series appears too intermittent to be
considered in the normal range of HRV. Using sj �
R22.52j�J

t made it possible to simulate some of the impor-
tant RRi statistics, including power law spectrum, stretch-
exponential-like increment PDF (Fig. 4a), z �q� (Fig. 4b),
and f�h� spectra (Fig. 4c).

In summary, we showed that there are similarities in the
statistics and the generating mechanism of signal fluctua-
tion between daytime RRi of healthy humans and the ve-
locity in fluid turbulence. The similar group-averaged z �q�
ratio based on ESS is interesting. Further tests are needed
to examine the robustness of using this ratio to characterize
HRV. Our preliminary study on the model lends hope for
using ideas from FDT to study RRi fluctuation. In particu-
lar, Fig. 4 shows strong evidence that a cascade mechanism
can generate some of the crucial statistics of daytime RRi
fluctuation. Further studies are necessary to characterize
detailed behaviors of the model and its implications. The
juxtaposition proposed here should yield fruitful interac-
tions between disciplines and better understanding of the
similitudes of the two complex phenomena.

We thank NSERC of Canada and HSFO of Ontario for
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