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Two-Component Interference Effect: Model of a Spin-Polarized Transport
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The effect of spin-involved interaction on the transport properties of disordered two-dimensional
electron systems with ferromagnetic contacts is described using a two-component model. Components
representing spin-up and spin-down states are supposed to be coupled at a discrete set of points. We have
found that due to the additional interference arising in two-component systems the difference between
conductances for the parallel and antiparallel orientations of the contact magnetization changes its sign
as a function of the length of the conducting channel.
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Spin-polarized transport in two-dimensional electron
systems has been a field of growing interest during the last
several years. Typically, the experiments are performed
using a two-terminal device with ferromagnetic metal
contacts. A spin polarization of the injected current is
expected from the different densities of states for spin-up
and spin-down electrons in the ferromagnetic source.
This leads to a spin dependent interface resistance, which
also exists at the interface of the second ferromagnetic
contact, the drain. Together with spin-involved scattering
processes within the studied electron system this should
result in a conductance which depends on the relative
magnetization of the two contacts [1].

The quantum mechanical nature of spin places it out
of reach of many of the forces in a solid and the ori-
entation of a carrier’s spin can be very long-lived. The
conductance G"" of a two-terminal device with parallel
orientation of magnetic moments of the contacts is thus ex-
pected to be higher than the conductance G"# for the case
of antiparallel moment orientation [1,2]. However, just the
opposite results have been reported recently [3] for a two-
dimensional electron gas confined in an InAs channel with
the permalloy source and drain. It has been found that an
ensemble average of the conductance difference G"" 2 G"#

decreases as a function of the channel length reaching
negative values in a quasiballistic regime when the elec-
tron mean free path le becomes comparable with the chan-
nel length.

In the absence of magnetic impurities the natural can-
didate for spin dephasing and precession effects is the
spin-orbit coupling to impurity atoms or defects. It is re-
sponsible for the so-called antilocalization effect [4]. Later
attention was turned to the effects caused by a Rashba term
[5,6] in two-dimensional [7–9] and quasi-one-dimensional
systems [10–12]. However, a realistic transport theory for
fully quantum coherent systems including the spin-orbit
coupling to the impurities or defects has not yet been re-
ported. The problem becomes complicated even if the elec-
tron motion is restricted to a two-dimensional space. In
0031-9007�01�86(8)�1598(4)$15.00
general, the spin-orbit interaction turns the problem back
to three dimensions.

The goal of this paper is to reveal those features of
the transport properties which can be caused by the spin-
orbit interaction induced by a scattering potential. In the
interesting case of a quasiballistic regime, which exhibits
chaotic features, it is very difficult to estimate deviation
from the exact solution caused by any used approxima-
tion. For this reason we have employed a simplifying
two-component model with point interactions for which
an exact solution, including fully the quantum coherence,
can be found. Nonzero spin-orbit coupling is assumed to
be associated with short-range scattering potentials only.
Although the treatment is far from a realistic transport the-
ory, it might be useful to understand some mysteries of the
recent experimental observation [3].

The free electron system is a typical two-component
system if the electron spin is taken into account. If
there are no spin-involved forces, electron states are rep-
resented by plane waves exp�i �k �r� with �k being a wave
vector. Orientation of the electron spin is given by the
quantum number sz � 6

1
2 and the electron system can

be split into two independent subsystems, each of them
composed of electrons having the same spin orientation.
However, any perturbation of the background potential
can cause a coupling between these subsystems due to a
nonzero spin-orbit interaction.

Let us first consider a single scattering potential acting
on a two-dimensional electron gas within a finite region
of a radius r0. In accord with the standard scattering the-
ory an incoming wave belonging to one particular subsys-
tem, say of the spin-up states, can be scattered into states
belonging to both subsystems. In the short-range limit,
kr0 ø 1, only the s part of the incoming wave gives a
nonzero contribution to the scattering process. For a given
energy E � h̄2k2�2m, (k � j �kj), the corresponding solu-
tion of the radial Schrödinger equation has two compo-
nents, C"�r� and C#�r�. Outside the scattering region they
can be written as follows [13,14]:
© 2001 The American Physical Society
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C"�r� � J0�kr� 1 a�k�H�1�
0 �kr� ,

C#�r� � b�k�H�1�
0 �kr� ,

(1)

where J0�z� denotes the cylindrical Bessel function and
the Hankel function H

�1�
0 �z� represents scattered outgoing

waves.
Taking into account the time reversal symmetry and as-

suming that the system is invariant with respect to the sub-
system interchange, the amplitudes a�k� and b�k� in the
short-range limit have to be of the following general form
[14]:
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1 1

2i
p �g 1 ln k

2 2 A�
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2i
p

C

∑
1 1

2i
p

µ
g 1 ln

k
2

2 A

∂∏21

a�k� ,

(2)

where A and C are real model parameters. If C is chosen
to be zero, the parameter A represents the strength of the
scattering process within one particular subsystem and it
is related to the radius r0 of the potential well, A � lnr0.
Nonzero values of the parameter C give rise to a spin-flip
process.

The relevant physical parameters characterizing the scat-
tering event are the total scattering cross section s0,

s0 � a�k�2 1 b�k�2, (3)

and the spin-flip probability t"#,

t"# �
b�k�2

a�k�2 1 b�k�2 , (4)

that can be expressed through the parameters A and C.
Note that the assumption of the system invariance with
respect to the subsystem interchange leads to the indepen-
dence of s0 and t"# on the spin orientation of the incoming
electron. This assumption has been made for simplicity
despite the fact that it need not be satisfied in real systems,
e.g., due to a Rashba term [5,6].

The scattering problem for a two-dimensional strip with
a finite number of short-range scatterers, as sketched in
Fig. 1, can be solved exactly. The scattering matrix for the
case of a one-component system without boundaries is well
known [13] and the detail analysis for a finite strip has also
been reported [15]. The generalization to a two-component
system is straightforward and will be published elsewhere.
For simplicity we have assumed that all scatterers are iden-
tical; i.e., they have the same scattering cross section s0
and spin-flip probability t"# if they would be placed alone
within the two-dimensional space. The scattering matrix
has been obtained numerically for a given configuration of
point scatterers randomly distributed within a strip region
of the length L.

Spin-dependent transport properties are determined by
partial transmission coefficients representing transition be-
tween left and right subsystems of asymptotic spin-up or
FIG. 1. Scheme of the scattering process in a two-component
system. Upper and lower strips of the width w represent the spin
subsystems. Scatterers, black points, serve also as connection
points between subsystems giving rise to spin-flip processes.
Thick full and dashed lines represent incoming and outgoing
waves, respectively.

spin-down states. They are defined as the sum of trans-
mission probabilities over all relevant modes of asymp-
totic states. To simplify the description by excluding the
quantum fluctuations from our consideration we have used
configurationally averaged values of the partial coefficients
to define 2 3 2 transmission and reflection matrices T and
R, respectively:

T �
µ

T "" T "#

T #" T ##

∂
, R �

µ
R"" R"#

R#" R##

∂
. (5)

For the considered symmetrical system T "" � T ##, T "# �
T #", R"" � R##, and R"# � R#".

In Fig. 2 the dependence of partial transmission coef-
ficients on the length L of the scattering region is shown
for different spin-flip probabilities t"#. Since in the absence
of magnetic impurities a weak coupling between subsys-
tems is expected we limit presented numerical examples
to the case of small values of t"#. The used energy corre-
sponds to 31 occupied subbands. Concentration of scatter-
ers (750�w2) and the scattering cross section s0 � 0.1217
were held fixed. These are typical values used to model lo-
calization effects in two-dimensional systems.

For some values of the spin-flip probability and lengths
L, T "" becomes less than T "#. It means that the polarization
of the transmitted current has opposite orientation from
the polarization of the injected current. We ascribe this
unexpected result to the additional interference appearing
in two-component systems. Its origin can be more easily
cleared up for the case of a one-dimensional conductor,
which leads to the same qualitative results. It can easily be
shown that in this case the two-component spin states can
be expressed as a linear superposition of states that do not
change their orientation during the scattering process. For
a single short-range scatterer located at x � 0 the trans-
mitted waves have the following form:

C"�x . 0� �
1
2

�t�1�
1 1 t

�2�
1 �eikx ,

C#�x . 0� �
1
2

�t�1�
1 2 t

�2�
1 �eikx ,

(6)

where
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FIG. 2. The partial transmission coefficients T "" (full line) and
T "# (dashed line) as a function of the scattering region length L
for several values of the spin-flip probability: (a) t"# � 8.1 3
1023; (b) t"# � 0.2 3 1023; (c) t"# � 0.0005 3 1023.

t
�6�
1 �

1

1 1 i
A
2k

1
16AC

, (7)

and two real parameters A and C representing the scatter-
ing have a similar meaning as that introduced above. The
amplitudes of transmitted waves have a similar form for
the case of n scatterers, and partial transmission coeffi-
cients are given as follows:

T
""
1D �

1
4
jt�1�

n 1 t�2�
n j2; T

"#
1D �

1
4
jt�1�

n 2 t�2�
n j2, (8)

where t
�1�
n and t

�2�
n are amplitudes of transmitted waves

through the one-component one-dimensional system
with n scatterers represented by short-range potentials
A�1 1 AC�21d�x 2 Xi� or A�1 2 AC�21d�x 2 Xi�,
respectively. There are no transitions between these
one-dimensional subsystems and each of them has its own
localization length. Transmitted waves t

�1�
n exp�ikx� and

t
�2�
n exp�ikx� acquire different phase shifts and the result-

ing interference between them is the origin of strongly
damped oscillations of the difference T

""
1D 2 T

"#
1D with

increasing number of scatterers, i.e., with scattering region
1600
length L. A detailed analysis of this one-dimensional case
will be published elsewhere.

While the partial transmission coefficients are affected
by the above discussed additional interference, the total
transmission coefficient T � 2�T "" 1 T "#� is not affected
and it shows the standard antilocalization effect [4]. The
value of T increases with increasing spin-flip probability,
as shown in Fig. 3.

The device conductance of a two-component quantum
system is determined by a matrix of partial transmission
coefficients, Tdev,

G �
e2

h
�1, 1�Tdev

µ
1
1

∂
; Tdev �

√
T
""
dev T

"#
dev

T
#"
dev T

##
dev

!
, (9)

which depend on the properties of ferromagnetic contacts
and their interfaces with the two-dimensional electron gas.
To estimate their effect we have used the idea of polariza-
tion filters [12]. The source and the drain are considered to
be standard reservoirs and spin-dependent effects are mod-
eled by filters placed within the asymptotic region of ideal
leads.

For the sake of simplicity we assume that electrons re-
flected by the filter will be equally distributed between all
available quantum channels without any change of their
spin orientation and that their coherence is completely de-
stroyed. In this case the filtering effect can be described
by the 2 3 2 diagonal matrix of reflection probabilities a

and b:

Fs,d �
µ

as,d 0
0 bs,d

∂
, (10)

where indices s and d represent the source filter and the
drain filter, respectively.
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FIG. 3. The total transmission coefficient T as a function of
the scattering region length L for several values of the spin-flip
probability: t"# � 8.1 3 1023 (full line), t"# � 4.2 3 1023

(dash-dotted line), t"# � 1.1 3 1023 (dotted line), and
t"# � 0.0005 3 1023 (dashed line).
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The conductance of the above described model device
can be expressed as a function of the already defined co-
efficients T "", T "#, R"", and R"# describing the scattering
process of the same device without filters. For the case
of N available quantum channels (subbands) within each
subsystem we get the following expression for the trans-
mission matrix Tdev entering Eq. (9):

Tdev � �1 2 Fd�NMdTKd,sNMs�1 2 Fs� , (11)

where N stands for the product of N and unit matrix 1.
The effect of multiple reflections between filters and the
scattering region is represented by matrices Ms and Md :

Ms � �N 2 FsR�21; Md � �N 2 RFd�21, (12)

and

Kd,s � �1 2 MsFsTFdMdT�21. (13)

The device conductance, Eq. (9), depends on the re-
flection probabilities as,d and bs,d modeling the effect of
ferromagnetic contacts. For the case of the parallel ori-
entation of the contact magnetization the conductance G""

can be obtained by setting as � ad and bs � bd . To
get G"# for the antiparallel contact magnetization as � bd

and bs � ad have to be used. While the conductance val-
ues strongly depend on the reflection probabilities, the sign
of the conductance difference DG � G"" 2 G"# is not af-
fected. In Fig. 4 the relative conductance change

DG
G0

� 2
G"" 2 G"#

G"" 1 G"#
(14)

as a function of the scattering-region length L is shown
for the case of ideal filters, as � 1 and bs � 0. It corre-
sponds to injection of fully polarized current and vanishing
interface resistance. Other used parameters are the same
as that for transmission coefficients presented in Fig. 2.

Spin-injection experiments usually show a large inter-
face resistance. Also, the real devices are of the larger
dimensions, usually hundreds of occupied subbands, and
evaluation of the corresponding scattering matrix is more
time-consuming. Nevertheless, the obtained results have
the same qualitative features as that described above. Us-
ing the model parameters relevant for the device studied by
Hu et al. [3], nearly quantitative agreement with the mea-
sured data can be reached if the value t"# � 4.8 3 1023

is chosen for spin-flip probability, as shown in the inset of
Fig. 4.

The main result of the described model is that in meso-
scopic disordered systems the additional quantum coher-
ence arising in two-component systems can lead to a higher
conductance of two-terminal devices with antiparallel con-
tact magnetization than that for parallel configuration.
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FIG. 4. Relative conductance change DG�G0 as a func-
tion of the scattering region length L for several values
of the spin-flip probability: t"# � 8.1 3 1023 (full line),
t"# � 1.1 3 1023 (dash-dotted line), t"# � 0.2 3 1023 (dotted
line), and t"# � 0.0005 3 1023 (dashed line). In the inset
crosses represent experimental data obtained by Hu et al. and
the full line is the result of the model calculation for the
following parameters: N � 173, as � 0.01, bs � 0, scatterer
concentration 1500�w2, s0 � 0.1341, and t"# � 4.8 3 1023.
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