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We derive simple analytical expressions for the particle density r�r� and the kinetic energy density
t�r� for a system of noninteracting fermions in a d-dimensional isotropic harmonic oscillator potential.
We test the Thomas-Fermi (TF, or local-density) approximation for the functional relation t�r� using
the exact r�r� and show that it locally reproduces the exact kinetic energy density t�r�, including the
shell oscillations, surprisingly well everywhere except near the classical turning point. For the special
case of two dimensions (2D), we obtain the unexpected analytical result that the integral of tTF�r�r��
yields the exact total kinetic energy.
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The evaporative cooling of dilute (i.e., almost nonin-
teracting) fermionic gases has recently been achieved by
DeMarco and Jin at JILA in Colorado [1]. This spectacu-
lar experimental milestone has stimulated an enormous ef-
fort to explore and understand the properties of these new
quantum systems, which can be viewed as the quantum
analog of the Bose-Einstein condensation (BEC) recently
observed in ultracold trapped Bose gases. While it is true
that the theory of homogeneous dilute Fermi systems is
fairly well developed, addressing new experiments prob-
ing strongly inhomogeneous systems in regimes far from
equilibrium, represents a much greater challenge to theory.
To this end, Vignolo et al. [2] have recently used a Green’s
function method to compute the particle and kinetic en-
ergy densities for a system of noninteracting fermions in
a one-dimensional (1D) harmonic oscillator potential. In
principle such a (quasi-)1D system can be achieved experi-
mentally using state-of-the-art magnetic confinement tech-
niques [1]. Owing to the enhanced shell structure found in
1D, Vignolo et al. suggest that these quantum oscillations
may be accessible to observation in magnetically trapped
gases of fermionic alkali atoms. We give here much
simpler analytical results for the more general case of a d-
dimensional harmonic potential and use them to test their
Thomas-Fermi (TF) functional relation.

The work presented in this paper is also applicable to
a 2D electron gas confined to so-called quantum dots [3].
The external confinement potential of these dots is in many
cases essentially harmonic. Bhaduri et al. [4] have shown
that the inclusion of a short-range two-body interaction
may be included via fractional statistics, provided that one
uses the TF relation tTF�r� relevant for 2D.

The method. —We start from a system of noninteracting
fermions described by the time-independent Schrödinger
equation

Ĥfi�r� � �T̂ 1 V �r��fi�r� � eifi�r� , (1)
0031-9007�01�86(8)�1574(4)$15.00
where V �r� is a local potential to be specified later. The
single-particle density matrix can be obtained by an inverse
Laplace transform of the Bloch density matrix:

r�r, r0� � 2
X

ei,EF

f�
i �r0�fi�r� � L 21

EF

∑
2
b

C�r, r0; b�
∏

,

(2)

where the latter is defined by

C�r, r0; b� �
X
all i

f�
i �r0�fi�r� exp�2bei� . (3)

EF is the Fermi energy; the factor 2 accounts for spin. We
now use center-of-mass and relative coordinates:

q �
1
2

�r 1 r0�, s � r 2 r0, (4)

so that the local density is r�q� � r�q, s�js�0. For the
kinetic energy density, we investigate two expressions [5]:

t�q� � 2
h̄2

2m
2

X
ei,EF

f�
i �q�=2fi�q� , (5)

t1�q� �
h̄2

2m
2

X
ei,EF

j=fi�q�j2. (6)

In the presence of time-reversal symmetry they are simply
related by

t�q� � t1�q� 2
1
2

h̄2

2m
=2r�q� . (7)

A convenient quantity is their mean,

j�q� �
1
2

�t�q� 1 t1�q�� , (8)

which is obtained from the density matrix by

j�q� � 2
h̄2

2m

£
=2

sr�q, s�
§
s�0, (9)

where =s is the gradient with respect to the variable s. Note
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that all three quantities t�q�, t1�q�, and j�q� integrate to
the same exact kinetic energy.

We now specialize to an isotropic harmonic oscillator
potential in d dimensions:
V �r� �
m
2

v2r2, (10)

where r �
q

x2
1 1 · · · 1 x2

d is the radial variable. The
exact Bloch density matrix for this system is given by [6]
C�r, r0; b� � C�q, s; b� �

µ
mv

2p h̄
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sinhd�2�bh̄v�
exp
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2

mv
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2
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s2

4
coth

µ
bh̄v

2

∂∏æ
. (11)
To get the particle and kinetic energy densities, we need to
perform inverse Laplace transforms of the above function
and its derivatives at s � 0. For the first exponential factor
in (11), we employ the following relation which can be
derived from Ref. [7]:

exp�2x tanh�b�2�� �
X̀
n�0

�21�nLn�2x�

3 e2x�e2nb 1 e2�n11�b� . (12)

This relation holds if jzj � je2bj , 1, which is fulfilled
since the contour of the inverse Laplace transform integral
in the complex b plane goes along b � it 1 c for t [
�2`, `� with c . 0. Further analytical progress depends
on the dimensionality d.

The case d � 2.—Here we can directly use the follow-
ing exact Laplace inverse [8]:

L 21
l

∑
e2nb

b sinh�b�

∏
� 2

X̀
k�0

Q�l 2 �2k 1 1� 2 n� . (13)

When filling M 1 1 oscillator shells, the Fermi energy is

EF � h̄v�M 1 1 1 d� , (14)

with d being an infinitesimally small positive number.
Combining Eqs. (12) and (13) and carefully evaluating the
sums over the step functions, we get for the density

r�q� � 2

µ
mv

p h̄

∂ MX
m�0

�M 2 m 1 1� �21�mLm�2x�e2x ,

(15)

where x � �mv�h̄�q2. The kinetic energy density (9)
is given, after some suitable manipulations of hyperbolic
functions, by the following Laplace inverse:

j�q� � h̄v

µ
mv

p h̄

∂
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(16)

Removing one inverse sinh factor by the identity

1
2 sinh�bh̄v�2�

�
X̀
m�0

e2�m11�2�b h̄v , (17)

and proceeding as above, we get the final expression for
the kinetic energy density:

j�q� � h̄v

µ
mv

p h̄

∂ MX
m�0

�M 2 m 1 1�2�21�mLm�2x�e2x .

(18)
The integrals d2q of the densities (15) and (18) are readily
evaluated usingZ `

0
Ln�2x�e2x dx � �21�n (19)

and yield the correct results for the number N of particles
in M 1 1 filled shellsZ

r�q� d2q � 2
MX

m�0

�m 1 1� � M2 1 3M 1 2

� N�M� , (20)

and for their exact kinetic energy Ekin�M�Z
j�q� d2q � h̄v

MX
m�0

�m 1 1�2

�
1
6

h̄v�2M3 1 9M2 1 13M 1 6�

� Ekin�M� . (21)

Next we investigate the Thomas-Fermi relation between
t (or t1 or j) and r, which in 2D is

tTF�r� �
h̄2

2m
pr2; (22)

see also Eq. (33) below. Inserting Eq. (15) into the right-
hand side above and integrating, using the orthonormality
of the Laguerre polynomials, we findZ

tTF�r�q�� d2q � h̄v

MX
m�0

�m 1 1�2 � Ekin�M� . (23)

This means that the simple TF functional —without gra-
dient corrections [9]— using the exact density r�q� yields
the exact quantum-mechanical kinetic energy, which is
highly nontrivial and unexpected. The local behavior of
tTF�r�q�� will be examined numerically below.

The cases d � 1 and d $ 3.—For d � 1, we have a
square root of the sinh factor in the denominator of (11).
To handle it, we use the expansion

sinh1�2�s� �
1
p

2
�es 2 e2s�1�2

�
1
p

2
es�2

p
1 2 e22s

�
1
p

2
es�2

Ω
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�2m 2 3�!!
�2m�!!

e22ms
æ

, (24)

which converges for Res . 0, and include it as a factor on
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top of the d � 2 case. For d � 3, we have to include its
inverse, which has the expansion

sinh21�2�s� �
p

2 e2s�2�1 2 e22s�21�2

�
p

2 e2s�2
Ω
1 1
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m�1

�2m 2 1�!!
�2m�!!

e22ms
æ

.

(25)

For d � 4, we need

sinh21�s� � 2�es 2 e2s�21 � 2
X̀
m�0

e2�2m11�s, (26)

and so on. Using EF � h̄v�M 1 d�2 1 d� and proceed-
ing as above for the Laplace inversions, we obtain the gen-
eral expressions
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µ
mv

p h̄

∂d�2

2
MX

m�0

F
�d�
M2m�21�mLm�2x�e2x , (27)
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The coefficients F�d�
n , G�d�

n are given by

F�d�
n � n 1 1 1

�n�2�X
m�1

�n 1 1 2 2m�g�d�
m ,

G�d�
n � �n 1 1�2 1

�n�2�X
m�1

�n 1 1 2 2m�2g�d�
m ,

(29)

where �n�2� � integer�n�2�, and (for m $ 1)
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FIG. 1. Kinetic energy densities for N � 240 particles filling
eight shells of a 3D isotropic harmonic oscillator. Upper panel:
solid line, t�q�; dashed line, t1�q�; dotted line, j�q�. Lower
panel: solid line, j�q�; dashed line, tTF�q�.
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(30)

and so on. For even dimensions, F�d�
n and G�d�

n can be
given in closed forms.

Like Eqs. (15) and (18), to which Eqs. (27) and (28)
reduce for 2D, the latter are much simpler for numeri-
cal computations than their definitions in terms of the
eigenfunctions, which necessitate multiple summations
for d $ 2.

In the TF or local-density approximation (LDA), one
gets from the potential V �q� � �mv2�2�q2 � �h̄v�2�x
the following local densities:
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(32)

where l � EF��h̄v�. The TF functional relation between
t and r is then given by

tTF�r� �
h̄2

2m
4pd

�d 1 2�

∑
d
4

G

µ
d
2

∂∏2�d

r112�d . (33)

Our objective now is to study numerically the above rela-
tion using the exact densities and to see how well it holds
locally as well as globally (i.e., upon integration). We have

0 1 2 3 4 5 6 7 8
q

0

10

20

30

40

(q
),

T
F[

(q
)]

,
T

F(
q)

0.0 0.125 0.25 0.375 0.5
q

37

38

39

6.5 7.0 7.5 8.0
q

0

1

2

FIG. 2. Kinetic energy densities for N � 50 particles filling
25 shells of a 1D harmonic oscillator. Solid lines: exact t�q�.
Heavy dashed lines: TF relation tTF�r�q�� (33) using the exact
r�q�. Dotted lines: TF density tTF�q� (32). The insets give
close-ups near the center and the tail regions.
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FIG. 3. The same as Fig. 2, but for N � 420 particles filling
20 shells of a 2D isotropic harmonic oscillator.

already seen analytically that its integral yields the exact
kinetic energy for d � 2.

Numerical results.—The figures show numerical results
in units such that h̄ � v � m � 1. We make the follow-
ing observations:

(i) As is well known (cf. also Ref. [2]), the densities
r�q� and t�q�, t1�q� oscillate around the smooth TF den-
sities (31) and (32), respectively, except near the turning
point where the latter go to zero (see Figs. 2 and 3).

(ii) The shell oscillations in the quantities t�q� and
t1�q� are exactly opposite in phase, so that their mean
j�q� is a smooth function of q that (except near the turn-
ing point) closely follows the TF density tTF�q� given in
(32) (see Fig. 1). This has already been observed long
ago [10].

(iii) The functional tTF�r�q�� in (33), using the exact
densities r�q�, reproduces locally the exact kinetic energy
density t�q� surprisingly well, including the shell oscilla-
tions, except near the classical turning point and in the far
tail region (see Figs. 2 and 3).

(iv) The integral of tTF�r�q�� over the d-dimensional
space yields the exact kinetic energy only for d � 2; see
Eq. (23). In the other cases it yields kinetic energies
with errors less than 1% for N * 14, 100, and 900 in
d � 1, 3, and 4 dimensions, respectively.

Summary and conclusions.—Our finding that the TF
functional relation tTF�r�q�� works so well locally is sur-
prising, since it theoretically is exact only in the LDA,
i.e., for spatially homogeneous systems. That it repro-
duces the strong local shell oscillations in t�q� so accu-
rately — in the figures, the error cannot been recognized
except in the tail regions — is therefore unexpected and
does not seem to have been noticed before [11]. We must,
however, add the caveat that the functional tTF�r�q�� can-
not be variationally exact. As is well known, indeed, the
Euler-Lagrange variational equation derived from it leads
precisely to the TF density rTF�q� in Eq. (31), and not to
the exact quantum-mechanical density r�q�.

In the 2D case, where the integral even reproduces
the exact kinetic energy, our result supports the basic as-
sumptions made in Ref. [4] concerning the inclusion of
a short-range two-body force through fractional statistics,
which relies upon the TF relation (22).

Finally, we emphasize that the recent work of Vignolo
et al. [2] is a special case of our more general results, and
we point out that the prominent shell structure displayed
in 2D could also become observable in experiments on
alkali vapors.

We are grateful to R. K. Bhaduri and M. V. N. Murthy for
encouraging discussions and we acknowledge the warm
hospitality of the Department of Physics and Astronomy
at McMaster University. We also acknowledge financial
support from the Deutsche Forschungsgemeinschaft and
the NSERC of Canada.

[1] B. DeMarco and D. S. Jin, Science 285, 1703 (1999).
[2] P. Vignolo, A. Minguzzi, and M. P. Tosi, Phys. Rev. Lett.

85, 2850 (2000).
[3] See, e.g., L. P. Kouwenhoven, T. H. Oosterkamp,

M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda,
and S. Tarucha, Science 278, 1788 (1997).

[4] R. K. Bhaduri, M. V. N. Murthy, and M. K. Srivastava,
Phys. Rev. Lett. 76, 165 (1996); see also M. K.
Shrivastava, R. K. Bhaduri, J. Law, and M. V. N. Murthy,
Can. J. Phys. 78, 9 (2000).

[5] In the standard literature on density functional theory, t�q�
usually denotes the present quantity t1�q�, Eq. (6).

[6] E. H. Sondheimer and A. H. Wilson, Proc. R. Soc. London
A 210, 173 (1951).

[7] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Se-
ries, and Products (Academic Press, New York, 1994), 5th
ed., Eq. 8.975.1.

[8] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions (Dover Publications, New York, 1970),
Eq. 29.3.70.

[9] See, e.g., M. Brack and R. K. Bhaduri, Semiclassical
Physics, Frontiers in Physics Vol. 96 (Addison-Wesley,
Reading, MA, 1997). One of us (B.V.Z.) has recently
shown that to all orders in h̄, there are no gradient
corrections to the kinetic energy density for d � 2
(unpublished).

[10] R. K. Bhaduri and L. F. Zaifman, Can. J. Phys. 57, 1990
(1979); C. Guet and M. Brack, Z. Phys. A 297, 247 (1980).

[11] One obtains very similar results also for fermions in
a 1D box and spherical 2D or 3D billiards [M. Brack
(unpublished)].
1577


