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Superfluid Fraction of 3He-4He Mixtures Confined at 0.0483 mm between Silicon Wafers
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We report measurements of the superfluid fraction rs�r of films of 3He-4He mixtures confined be-
tween silicon wafers at 0.0483 mm separation. The data obtained using adiabatic fountain resonance
(AFR) can be used to test for the first time expectations of correlation-length scaling in the case of pla-
nar mixtures. For the mixtures, the data for rs�r collapse well on a universal function. The dissipation
associated with AFR can also be scaled, and indicates two-dimensional crossover. These results are in
contrast to pure 4He, where over a wider range of confinements, the data for rs�r are found not to scale.
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The behavior of a system near a second order phase
transition when confined to a small spatial dimension is
a fundamental problem in statistical mechanics [1–4]. If
the spatial confinement is uniform at some small length
scale L, one expects that the critical behavior will be renor-
malized in a way which should be described by scaling
functions. These involve only the critical properties of the
system of interest as obtained in the thermodynamic limit.
Further, specific to a given confinement geometry, one may
obtain behavior which reflects dimensionality crossover.
For instance, a film geometry would show two-dimensional
(2D) crossover. Scaling functions describing this would
depend only on the ratio of L to the correlation length j

of the unconfined system except in the 2D region.
There has been a substantial amount of work on 4He

at the superfluid transition to address these issues [5]. For
the specific heat, in particular, recent work has shown good
agreement with scaling predictions and qualitative agree-
ment with calculated scaling functions [6–10]. There are
difficulties which still remain on the superfluid side, espe-
cially near the specific heat maximum [7,8]. In the case of
the superfluid fraction for planar confinement the situation
is not as good. Measurements for 4He for 2D crossover
have shown lack of scaling which remains unexplained
[11]. On the theory side, Monte Carlo simulations of the
XY model have also shown lack of scaling which could
be fixed by introducing an additional length scale to the
scaling equations [12]. Field theory calculations yield a
unique scaling function [13].

Much less is known experimentally for the finite-size
scaling of 3He and 4He mixtures. These present an oppor-
tunity to study finite-size scaling by using the same spatial
confinement and varying the 3He molar concentration x.
This makes use of the fact that the magnitude of the cor-
relation length j for mixtures varies with concentration
while the critical exponent is universal, at least for small
x. Specifically, one has [14–16]
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where t � �1 2 T�Tl�, n � 0.671 [17], and rs�r be-
haves as

rs

r
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Thus, the amplitude of the correlation length at any 3He
concentration is given by
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Equation (3) allows one to explore ranges of j0�x� over
a factor of about 2 before one runs into thermodynamic
path effects associated with measurements at constant con-
centration rather than constant chemical potential differ-
ence [18–20]. Measurements of the superfluid fraction for
cylindrical confinement have been done; however, these
data have not yielded an overall scaling [21].

To achieve confinement, we have used a technique
whereby two wafers of silicon are bonded at a separation
determined by a lithographically formed pattern of SiO2
[22,23]. This yields a uniform enclosure for the confined
helium. For the cell used in this work L � 0.0483 mm,
and the lateral extent is about 2 cm. Thus, helium confined
in this cell is a film bounded by two solid surfaces and,
effectively, infinite lateral extent. We have reported heat
capacity measurements using several of these cells with
various values of L up to 0.9869 mm [6–8].

To measure the superfluid density we make use in the
present work of a resonance in the motion of the super-
fluid. This involves movement of the superfluid between
the cell, which acts as a superleak, and a small volume in
the filling line with which the helium communicates [24].
This motion is driven thermally by applying an ac signal to
a heater. We have called this adiabatic fountain resonance
(AFR). It is a Helmholtz resonance in which the restoring
force for the movement of the helium is provided by dif-
ferences in the chemical potential between the helium in
the cell and the filling line. Thus, there is an oscillatory
response in the temperature, pressure, and in the case of
© 2001 The American Physical Society
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mixtures, concentration. In our experiment, we detect the
temperature oscillations.

The derivation of the resonance frequency for pure 4He
was reported in [24]. For the case of mixtures, a similar
procedure [25] can be followed to obtain for the resonance
frequency vR

v2
R �

rs

r

s

lPrVK
�1 1 a 2 b� � v2

0�1 1 a 2 b� ,

(4)

where s and V are geometric parameters of the cell, K
is the isothermal compressibility, and lP is a length over
which the pressure varies between the filling line and the
confined helium in the cell. The thermodynamic parame-
ters a and b are most easily derived as functions of the
mass concentration. They involve a number of thermody-
namic derivatives which can be evaluated. We find that
(a 2 b) varies between 10.02 and 20.07 for the range
of concentrations we have studied. In particular, a�T , x�
reduces to the expression of a at x � 0 given in [24];
and, b�T , x� vanishes at x � 0. The frequency v0, which
contains the superfluid fraction, can be obtained from our
measurements by analyzing the response of the cell as a
function of drive frequency v. One finds [25] that the am-
plitude of the temperature oscillations is given by
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while the phase difference u, between the drive signal and
the detected signal, is given by

tanu
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In these two equations L and L are scaled quantities with
dimensions s21 which are related to the thermal conduc-
tivity and dissipation, respectively [24].

In Fig. 1 data are shown for the amplitude of the tem-
perature response and phase shift for a concentration of
x � 0.36, at t � 1 2 T�Tl�x� � 0.01. The solid lines
are fits of these data using Eqs. (5) and (6). These fits
can be done with no systematic residuals. All parameters
can be obtained independently from either the phase or the
temperature oscillations. In particular, v0 from which the
superfluid fraction can be obtained is indicated in this plot
with a dashed line. Note that v0 is not at any obvious point
in these curves but is close to the maximum in the phase.
The total temperature excursion measured for these data is
only 2.5 mK. This can be resolved to better than 50 nK.
We achieve this by regulating the average temperature of
the cell and signal averaging at each frequency the ac os-
cillations associated with the resonance.
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FIG. 1. Example of AFR resonance, temperature, and phase
shift as functions of drive frequency. The solid lines are fits to
Eqs. (5) and (6).

To obtain the superfluid fraction from measurements at
various concentrations, we normalize v0. This is done
far from the transition where the data match the behav-
ior of unconfined helium. We have used the data from
[21]. We show the result of this in Fig. 2. Here are plotted
data at x � 0 and three other concentrations. The solid
line represents the data from [26]. The overall behavior
of these data is qualitatively as expected: as x increases,
the effect of confinement is felt at larger values of t. In
particular, note that at higher concentrations one cannot
obtain data for smaller values of t because of the broad-
ening of the resonance due to dissipation [27]. Ideally
one should see a discontinuity in the superfluid fraction
indicative of the Kosterlitz-Thouless nature of the two-
dimensional crossover [28]. The x � 0 data stop at a value
only 10% higher than this expected universal discontinu-
ity. The dissipation parameter L ranges from 0.01 3 v0 at
low temperatures to 0.4 3 v0 when the resonance is lost.
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FIG. 2. Superfluid fraction for helium confined in 0.0483 mm
and several concentrations.
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The expected finite-size scaling of the data shown in
Fig. 2 can be written in terms of a scaling function G as
follows:
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where the last expression is written in such a way as to in-
dicate that the effective confinement for the mixtures is
smaller, i.e., j0�x� . j0�0�. For the concentrations we
have studied, x � 0, 0.15, 0.24, 0.36 we have j0�x� �
3.57, 4.53, 5.31, 6.72 [21]. The data plotted according
to Eq. (7) are shown in Fig. 3. Two plots are generated.
For the bottom plot, L is taken for all the data as the geo-
metrical separation of the silicon wafers. The collapse of
these data is quite good; however, there seems to be still
some separation for the mixtures relative to the pure sys-
tem. This is especially visible for small values of the scal-
ing variable. For the top plot in this figure, which is shifted
upward by 0.1, we have taken for the mixtures an effective
geometrical separation of Leff � 0.9L. A decrease in L
for the mixtures relative to pure 4He may be understood as
follows. Near a confining wall there exists both a pressure
gradient and a concentration gradient. This latter is due to
the van der Waals field plus the greater kinetic energy of
3He atoms relative to 4He. This gradient in x is partly in a
region where the superfluid is normal, even though rich in
4He. This mechanism effectively limits the mixture to an
Leff smaller than L. This effect can be estimated using a
continuous model [29]. Irrespective of these refinements,
it is clear that the finite-size scaling prediction based on
the same geometrical confinement, but a changing j0�x�,
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FIG. 3. Ratio of confined to bulk superfluid fractions plotted
according to Eq. (7) with n � 0.671 [17]. Two values of L are
used in this plot; see text. The top plot is shifted upward by 0.1
for clarity.
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works well. An attempt of scaling the data without tak-
ing this into account does not work at all. Also shown
in Fig. 3 is the locus of the theoretical scaling function
[13]. Although this seems to have a somewhat different
dependence on the scaling variable than the data, the over-
all magnitude seems correct.

One can also look at the dissipation associated with the
resonance. The ratio of the dissipation parameter L to the
resonance frequency v0 is plotted in Fig. 4 as a function
of the scaling variable. One can see that the dissipation
scales as well as the superfluid density in the region close
to the transition. To achieve this, we have had to add
to the mixture, relative to x � 0, a constant background
dissipation of L�v0 � 0.01. The rapid rise in dissipation
as rs vanishes is indicative of vortex pair unbinding for
2D crossover. One can fit these data reasonably with the
expected dissipation [27] near the 2D transition. This is
the solid line in Fig. 4. This is interesting because the
data collapse using the 3D correlation length, while the
locus is determined by the 2D correlation length.

We emphasize that while the scaling for the superfluid
fraction and dissipation seems to work, the range of geo-
metrical sizes tested via the variation in j0�x� is limited.
A comparison of rs�r over a wider range of L’s is shown
in Fig. 5. These are all data for pure 4He. The present data
and those from [24] are obtained using the AFR technique.
The other data are obtained using a torsional oscillator
(TO) [11]. It seems clear that collectively, over a factor of
80 in L, these data do not collapse on a universal function
as expected. The AFR data seem to have a slightly dif-
ferent overall dependence than the TO data. But overall,
there is a trend for the data at smaller confinement to lie
at smaller values of the scaling variable. We also note
that the AFR data at 0.0483 mm are the most affected
by the van der Waals field at the walls. This field breaks
correlation-length scaling. However, were one to correct
for this effect, the data at smaller confinements would
separate further from the data at larger confinements,
and make the disagreement with scaling even worse
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FIG. 4. Ratio of dissipation to resonance frequency as a func-
tion of the scaling variable.
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FIG. 5. Ratio of superfluid density at x � 0 for planar
confinement.

[30,31]. This disagreement with correlation-length scaling
on the superfluid side of the transition has also been ob-
served for the specific heat in the case of planar films [7,8].

In summary, we have presented data for the superfluid
fraction of 3He-4He mixtures confined in a film geome-
try of 0.0483 mm. The data can be used to check on
correlation-length scaling by making use of the depen-
dence of the correlation length on 3He concentration. We
find that this works both for the superfluid density and the
dissipation. However, we point out that if one examines
data over larger variations in confinement, as available at
x � 0, one still finds lack of scaling.
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