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Optical Billiards for Atoms
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One of the central paradigms for classical and quantum chaos in conservative systems is the two-
dimensional billiard in which particles are confined to a closed region in the plane, undergoing elastic
collisions with the walls and free motion in between. We report the first realization of billiards using
ultracold atoms bouncing off beams of light. These beams create the desired spatial pattern, forming an
“optical billiard.” We find excellent agreement between theory and our experimental demonstration of
chaotic and stable motion in optical billiards, establishing a new testing ground for classical and quantum
chaos.
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Billiards have been the subject of active research in
physics and mathematics for many years [1]. It is well
known that the dynamics in this system are governed by
the shape of the billiard. For example, particles in a
circular billiard move along stable, periodic orbits. In
contrast, particle motion in a stadium-shaped billiard is
chaotic, with exponential divergence and randomness of
trajectories [2]. The renewed interest in billiards in re-
cent years has brought to light a number of fundamental
problems in physics, including justification of a probabilis-
tic approach to statistical mechanics, and the existence of
Maxwell’s demon [2–4]. On the experimental side, bil-
liards have been studied in quantum dots [5,6], microwave
cavities [7–9], and were found to be relevant to the design
of directional micro-lasers [10]. However, many impor-
tant issues have not been clearly addressed in these sys-
tems. These include the effects of soft boundaries [11],
surface scattering [12,13], and particle interactions [14].
Here we present a new experimental system for the study
of billiards based on ultracold atoms confined in a spatial
structure formed by beams of light. This system offers
unique advantages of choosing arbitrary billiard geome-
try, dynamical changing of parameters, introducing noise
and decoherence, and studying the role of quantum and
many-body effects. We test the capabilities of optical bil-
liards by measuring atomic motion in different regimes of
classical chaos and show an agreement with classical the-
ory and numerical simulations.

To create an optical billiard we use two acousto-optic
deflectors (AOD), each one deflecting the laser beam
in one of the two orthogonal directions (Fig. 1). By
scanning the deflection angles synchronously, an arbitrary
two-dimensional light pattern is “drawn” in a plane
perpendicular to the optical axis. Laser light of frequency
higher than atomic resonance creates a repulsive dipole
potential which is proportional to the laser intensity and
inversely proportional to the detuning. For a sufficiently
rapid scan of the laser beam, this potential is well approxi-
mated by a static potential barrier —the billiard wall.
This method was used recently to generate a circular
rotating-beam optical trap for cold rubidium atoms [15].
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In order to confine the atomic motion to two-dimensional
planes we add a stationary standing wave along the optical
axis. As a result of the repulsive potential, atoms move
in planes defined by the nodes of the standing wave
and bounce elastically off the scanning billiard beam.
The relatively large Rayleigh length of the billiard beam
(�2.7 mm, much bigger than the size of the atomic
cloud) ensures the equivalence between many independent
two-dimensional billiard regions cut by the standing wave
from the three-dimensional light pattern.

In this work we focus on a billiard geometry known
as a “symmetric gravitational wedge” first introduced by
Lehtihet and Miller [16]. This system consists of a point
mass m moving in a constant gravitational field g between
two straight, intersecting, elastic boundaries, which are
symmetrically inclined by equal angles to the direction of
gravity, forming a two-dimensional wedge that confines
the motion (see the lower panels in Fig. 2). Despite a
very simple shape, dynamical behavior of the gravitational
wedge is amazingly rich and can be tuned from stability

FIG. 1. Simplified scheme of the optical setup. The deflec-
tion angles of two acousto-optic devices are controlled by two
arbitrary function generators. By scanning these angles synchro-
nously, the desired spatial pattern of light can be “drawn” in the
billiard plane (the focal plane of the imaging optics, which is
omitted for clarity). An additional standing wave (not shown) is
aligned perpendicular to the billiard plane and confines atomic
motion to two dimensions.
© 2001 The American Physical Society
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FIG. 2. Poincaré surfaces of a section of the gravitational wedge are plotted in the upper panels for u � 30± (a), u � 40± (b),
and u � 50± (c). The axes of the phase space are shown in the top right corner of panel a (see text). For each angle, we show
one real-space trajectory (lower panels) starting from the initial conditions marked by an arrow on the corresponding phase space
portrait. The trajectory is weakly chaotic in case (a) (i.e., it connects to a very small region of the phase space), periodic in case
(b), and fully chaotic in (c) (i.e., it explores the whole phase space). An isolated fixed point corresponding to the dominant periodic
orbit of the system is marked by an asterisk in cases (a) and (b).
to chaos with a single parameter — the vertex half-angle u

(0± , u , 90±).
In order to examine the dynamical properties of the

billiard, it is convenient to follow its trajectories in the
phase space. The phase space of the gravitational wedge
is four dimensional. However, conservation of energy and
the fact that all trajectories reach the billiard boundaries
make it possible to project the phase space onto a two-
dimensional plane— the Poincaré surface of a section, de-
fined by mv2�2 1 mgy � E, y � x� tan�u�, where x and
y are the spatial coordinates of the particle (the origin is
at the wedge vertex) and v its velocity. In Fig. 2, we plot
the square of the normal component of v , y2

n, versus its
tangential component yt at the points of bounce. When
u � 45±, the motion along the wedge boundaries is sepa-
rable and therefore completely integrable. Numerical stud-
ies [16–18] demonstrate that for u , 45± the phase space
is mixed. Here, the regions of global chaos coexist with
the stable quasiperiodic trajectories, and particle motion
depends on the initial conditions. The relative amount of
chaos in this regime was shown to oscillate, having its
minima at un � 90±�n, n � 3, 4, 5, . . . . For instance, at
u � 30± only a very weak chaotic component is observed
near unstable periodic points, as illustrated in Fig. 2a by
an arrow pointing at the small region of confined chaos.
Between these special angles un both chaotic and stable
structures may occupy comparable areas (Fig. 2b). Here, a
simply connected domain of global chaos fills the phase
space between the stable orbits. An abrupt change in
dynamics occurs above 45±, where the system exhibits
hard chaos, and all periodic trajectories become unstable
(Fig. 2c).

It is important to emphasize that the reason for the chaos
in the gravitational wedge is the singularity of the vertex
[18]. Thus, any point in the chaotic sea is necessarily con-
nected with the wedge vertex [the upper domed boundary
in the phase space portraits (Fig. 2)]. This important prop-
erty of the wedge billiard allows us to study its dynamics
by measuring the survival probability of a particle in the
wedge with a “hole” at the vertex (see Fig. 3). Indeed, par-
ticles that are trapped within stable islands do not reach the
vertex and therefore cannot fall through the hole. Others,
however, sooner or later come arbitrarily close to the ver-
tex and escape from the wedge. This effect is illustrated
by a few examples of the periodic and chaotic trajectories
in Fig. 2.

Confining atomic motion inside optical billiards re-
quires a source of ultracold atoms. In our experiment,
we first trap and cool «106 cesium atoms in a standard
magneto-optical trap (MOT) [19]. Subsequent polariza-
tion-gradient cooling yields a temperature of 10 mK with
the initial spatial distribution radius of the atomic cloud
of 0.2 mm. After turning the trapping fields off, the bil-
liard beam and the standing wave are turned on simulta-
neously, and the atoms are left in the gravitational wedge
for up to 450 ms. The fraction of atoms that remained
in the billiard, as well as their spatial distribution, is de-
tected by turning the MOT trapping beams on in zero
magnetic field (thus effectively freezing the position of
the atoms in optical molasses [19]) and imaging fluo-
rescence in a short (50 ms) exposure on a cooled high-
resolution charge-coupled device (CCD) camera.

The billiard and the standing wave beams are provided
by a Ti:sapphire laser detuned 1.7 nm above the atomic

FIG. 3. Picture of the optical wedge with a hole, taken with the
CCD camera at the focal plane of the billiard beam. The angle,
hole diameter, and intensity distribution may be dynamically
varied, while the total size and the beam diameter are determined
by the optical setup.
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transition of cesium. After passing through the acousto-
optic deflectors, the billiard beam is focused into the vac-
uum chamber and has a 1�e2 radius of 28 mm and power
of 200 mW. Drawing a hole at a certain location on the
billiard wall is achieved by switching off the power of the
radio-frequency signal, which controls the diffraction ef-
ficiency of the AOD. The size of the billiards is mea-
sured independently on a second CCD camera. As shown
in Fig. 3, the maximum linear dimension of the wedge is
500 mm. It is much smaller than the 2.6 mm diameter of
the standing wave, which makes the two-dimensional mo-
tion approximation well justified. The lower billiard edge
is positioned 250 6 50 mm below the center of the MOT
and is fixed for all angles u. In the longitudinal direction,
we carefully match the focal plane of the billiard beam
with the position of the atomic cloud. In order to create an
effectively stationary wall, which is of crucial importance
for the regime of specular reflection, one needs to scan the
billiard beam as fast as possible. The response time of the
acousto-optic deflectors (0.55 ms) limits the scan rate to
�80 KHz. We set the scan rate to 20 KHz, after confirm-
ing that the results do not depend upon this parameter at
rates higher than 3 KHz.

In Fig. 4 we plot the survival probability in the gravita-
tional wedge with a hole diameter of 75 mm as a
function of its half-angle u. The survival probability is
calculated as the number of atoms detected in the billiard
after 300 ms and normalized by the initial number of
atoms in the wedge. The latter is measured at t � 25 ms,
when the rest of the atoms, falling due to gravity, are out
of the camera’s sight. This takes into account the different
loading efficiency of atoms into the billiard, which de-
pends on u due to the comparable sizes of the wedge and
the initial atomic cloud. The result clearly demonstrates
an expected oscillatory behavior. At u � 22.5± and 30±

FIG. 4. Survival probability in the gravitational wedge at t �
300 ms. Experimental curve is shown with the error bars corre-
sponding to 1 standard deviation. The results of the classical cal-
culations (upper curve) have been divided by 2 and shifted up by
0.1. The calculations have been performed with 10 000 particles.
They include wall softness, spontaneous emission, finite size of
the billiard, and do not have any fitting parameters.
1516
(90±�4 and 90±�3), the measure of the stable structures
in the phase space is at maximum, resulting in a larger
amount of trapped atoms. Since all periodic trajectories
of the u � 45± wedge connect to the vertex, the third
peak is shifted towards angles smaller than 45±, where
this connection is broken for most of the remaining stable
orbits. In exact agreement with theory [17], which pre-
dicts complete chaos at u � 26±, 34±, and above 45±, we
see distinct minima at these angles. An inherent feature
of optical billiards is the softness of the walls due to
the finite penetration depth of an atom into the Gaussian
profile of the laser beam. In the case of the gravitational
wedge, softness results in an effective decreasing of the
wedge angle, since the classical turning point is farther
from the wall center for higher points of bounce, where
the kinetic energy is smaller. This effect results in a shift
of all peaks and valleys of the oscillation curve by as
much as 10± from their expected locations. We correct for
the wall softness by reducing the light intensity linearly
with height, such that it decreases to zero at 500 mm
from the bottom of the wedge. This correction is not
complete, as the penetration depth depends only upon
a normal component of atomic velocity. However, one
would expect that averaging of the effective angle along
each trajectory would result in better angle matching, as
indeed was observed in our experiment. To make an exact
verification of this assumption, we calculate classical
trajectories numerically, where we include initial spatial
and momentum distributions of the atomic cloud, real size
of the wedge, wall softness, and spontaneous emission.
The result of the numerical analysis, shown in Fig. 4, is
in excellent agreement with the experimental observation.
Although a classical model is sufficient to describe our
current results, quantum effects should become important
at lower initial temperatures. We attribute the discrepancy
(by a factor of �2) in the overall magnitude of the signal
to the elastic collisions between cesium atoms in the
billiard, which may enhance the escape rate due to the
mixing of trajectories. The effect of interatomic colli-
sions on billiard dynamics is under current investigation.
Finally, we have measured the survival probability as
a function of time for different wedge angles and have
observed nonexponential escape rates from the billiard
in the regimes where the dynamics are not fully chaotic.
This effect may be due to the complicated hierarchy of
stable structures near the primary stability islands and will
be the topic of further research.

The ability to choose an arbitrary billiard geometry and
vary it dynamically in time, coupled with the techniques
for cooling and trapping of atoms, opens many directions
for future work. These include the study of quantum ef-
fects [20,21], many-body interactions, quantum statistics,
and decoherence in chaotic systems. The optical billiard
can also be viewed as a novel trap where particle dynamics
are controlled by the geometrical shape, providing a new
tool in the control of atomic motion.



VOLUME 86, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 FEBRUARY 2001
This work was supported by the National Science
Foundation, the R. A. Welch Foundation, the Texas Higher
Education Board, and the Sid W. Richardson Foundation.
Authors are thankful to W. Oskay and D. Steck for
their help in the laboratory and to B. Sundaram and
Yu. L. Bolotin for useful discussions.

[1] H.-J. Stöckmann, Quantum Chaos: An Introduction (Cam-
bridge University Press, New York, 1999).

[2] G. M. Zaslavsky, Phys. Today 52, No. 8, 39 (1999).
[3] D. A. Egolf, Science 287, 101 (2000).
[4] E. J. Heller, in Chaos and Quantum Physics, edited by

M.-J. Giannoni, A. Voros, and J. Zinn-Justin (Elsevier Sci-
ence, North-Holland, Amsterdam, 1991).

[5] R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys. Rev.
Lett. 65, 2442 (1990).

[6] C. M. Marcus et al., Phys. Rev. Lett. 69, 506 (1992).
[7] E. Doron, U. Smilansky, and A. Frenkel, Phys. Rev. Lett.

65, 3072 (1990).
[8] H.-J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215

(1990).
[9] S. Sridhar and E. J. Heller, Phys. Rev. A 46, R1728 (1992).
[10] J. U. Nöckel and A. D. Stone, Nature (London) 385, 45

(1997).
[11] V. Zharnitsky, Phys. Rev. Lett. 75, 4393 (1995).
[12] K. M. Frahm and D. L. Shepelyansky, Phys. Rev. Lett. 78,

1440 (1997).
[13] Y. M. Blanter, A. D. Mirlin, and B. A. Muzykantskii, Phys.

Rev. Lett. 80, 4161 (1998).
[14] T. Papenbrock and T. Prosen, Phys. Rev. Lett. 84, 262

(2000).
[15] N. Friedman, L. Khaykovich, R. Ozeri, and N. Davidson,

Phys. Rev. A 61, 031403(R) (2000).
[16] H. E. Lehtihet and B. N. Miller, Physica (Amsterdam) 21D,

93 (1986).
[17] P. H. Richter, H.-J. Scholz, and A. Wittek, Nonlinearity 3,

45 (1990).
[18] T. Szeredi and D. A. Goodings, Phys. Rev. E 48, 3518

(1993).
[19] S. Chu, Science 253, 861 (1991).
[20] T. Szeredi and D. A. Goodings, Phys. Rev. Lett. 69, 1640

(1992).
[21] C. Rouvinez and U. Smilansky, J. Phys. A 28, 77 (1995).
1517


