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We compute O �a3 lna� relative corrections to the ground-state hyperfine splitting of a QED two-body
bound state with different masses of constituents. The general result is then applied to muonium and
positronium. In particular, a new value of the muon-to-electron mass ratio is derived from the muonium
ground-state hyperfine splitting.
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The perturbative series for binding energies of a QED
bound state are nonanalytic in the fine structure constant
and the expansion contains powers of an1 lnn2a, where
n1 and n2 are some integer numbers. The appearance of
logarithms of a is best explained by the fact that different
scales, such as the mass m, the momentum ma, and the
typical energy ma2 control dynamics of the bound state.

In a recent paper [1] we have explained how the nonrela-
tivistic quantum electrodynamics (NRQED) regularized
dimensionally can be efficiently used to extract all lna

corrections in a given order of the expansion in a and ap-
plied this technique to compute O �a3 lna� corrections to
the decay rates of para- and orthopositronium. The purpose
of this Letter is to apply that method to the calculation of
the O �a3 lna� corrections to the hyperfine splitting (hfs)
of a general QED two-body system in a ground state with
an eye on the hfs in muonium and positronium.

For both, muonium and positronium, there are good
phenomenological reasons to consider O �a3 lna� contri-
butions to the ground-state hfs. The most precise measure-
ment of this quantity in positronium gives [2]

nPs
exp � 203 389.10�74� MHz , (1)

while the theoretical prediction [3,4], which includes
O �a3 ln2a� terms computed in [5], is

nPs
th � 203 392.01�46� MHz . (2)

Obviously, the theoretical and experimental results differ
from each other by an uncomfortably large amount (given
the claimed accuracy of the two), which indicates that
further study of O �a3� corrections to the hfs of the positro-
nium ground state is warranted. The complete calculation
of O �a3� corrections is currently out of question because
of tremendous technical difficulties; nevertheless, the
O �a3 lna� corrections can be determined.

Before considering the case of two equal masses, we de-
cided to study a bound state of two particles with masses
m and M. For m � me and M � mm this corresponds
to the bound state of the electron and the antimuon called
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muonium. Our technique provides an excellent tool to ex-
tract the O �a3 lna� corrections in this case keeping the full
mass dependence, and this result can be used in two ways.
First, we will be able to check the correctness of our calcu-
lation against the known results for O �a3 lna� corrections
obtained in an expansion in me�mm. Second, we will de-
rive some new results from our formula; in particular, we
will give the complete O �a3me�mm lna� correction to the
ground-state hfs in muonium which is important for the
extraction of the muon to electron mass ratio.

The Letter is organized as follows. We first review
our method of calculation (for more details we refer to
[1]). We then consider the unequal mass case (muonium)
where virtual annihilation is not allowed. Later, we discuss
phenomenological implications of our result for muonium
and derive the new value of the muon to electron mass
ratio. Finally, we describe how the calculation should be
modified in order to accommodate the positronium case
and its phenomenological consequences.

Our calculation is based on dimensionally regularized
nonrelativistic QED with d � 3 2 2e being the number
of spatial dimensions. In the NRQED framework two dif-
ferent contributions to the final result should be distin-
guished. The first one is the hard contribution, which is
sensitive to relativistic momenta only. This contribution
is not capable to produce any nonanalytic dependence on
a. The second contribution is the soft one. It is sensitive
to nonrelativistic scales and for this reason can produce a
nonanalytic dependence on the fine structure constant. The
main idea that permits a simple extraction of the logarith-
mic terms is the following. In dimensionally regularized
NRQED, the matrix elements of the nonrelativistic opera-
tors are the uniform functions of the fine structure con-
stant. This implies that, when written in proper units, the
dependence on a can be scaled out of any matrix element.
We refer to our recent paper [1] for additional details on
this approach; here we remind the reader that the relative
momentum p, the relative coordinate r, and the binding
energy E scale as p ! gp, r ! g21r, E ! g2m21E,
with the scaling parameter g � �mZa�1��112e� [1]. Here
© 2001 The American Physical Society
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m � mM��m 1 M� is the reduced mass of the bound
state. We also assign the charge Z to the particle of mass
M to distinguish recoil and radiative recoil contributions,
as it is customary in bound state calculations. To illus-
trate how the scaling arguments help to compute the lna

corrections, let us consider the matrix element of a non-
relativistic operator O that delivers the O �a3� correction
to the lowest order hfs kernel VBorn (s and S are the spin
operators of the two particles),

VBorn � 2
Za

mM

�si ,sj� �Si ,Sj�
4d

pd�r� . (3)

We consider relative correction to the hfs:

�CjOjC�
�CjVBornjC�

�
a3

p
�DO ln�Za� 1 const� . (4)

The operator O is a function of r and p. Performing
the rescaling of all the quantities on the left hand side of
Eq. (4) according to the rules given above, we extract the
dependence on a:

�CjOjC�
�CjVBornjC�

�
g32n1je

ml1ke

�CjOjC�
�CjVBornjC�

Ç
g�1

,

where n � 2, 3 is a power of a that explicitly enters the
operator O and j, l, k are some integers. If the matrix ele-
ment is finite, we can put e � 0, then the relative cor-
rection to the hfs is a3 times the a-independent function,
and hence no logarithms of a appear. Therefore, after
the rescaling, the only place where lna can come from
is the expansion of the factor g32n1je in powers of e;
this implies that, in order to generate the lna corrections,
the nonrelativistic matrix elements should diverge and only
divergent pieces of the matrix elements are needed to de-
termine the O �lna� corrections. Note also that since the
hard O �a3� contributions to the hfs are not needed, it is
straightforward to keep the mass dependence exactly in our
calculation.

Let us now list all the contributions to the hfs in mu-
onium and positronium relevant at O �a3 lna�. We be-
gin with discussing the irreducible contributions, i.e., those
that arise as average values of some local operators. The
first of those is the operator that corresponds to a Taylor
expansion of O �a� hard scale contributions in powers of
the relative momenta of the bound state constituents up
to O �p2�. For both radiative and annihilation corrections
this contribution can be related to the divergences in real
radiation [1]. For the recoil contributions things are more
complicated, and the easiest way to extract the O �ap2�
piece of the hard scattering amplitudes is to actually ex-
pand the box diagrams to the required order. This results
in the following contribution to the muonium hfs:

Dreal rad � Z2m2

∑
4
3

µ
Z
M

1
1
m

∂2
1

Z
Mm

∏
. (5)

Other irreducible corrections at this order are produced
due to, loosely speaking, the magnetic moment renormal-
ization of the O �a2� corrections to the hfs and in many
cases the result can be simply obtained by generalizing the
calculation of Ref. [4] to the unequal mass case. We then
derive

Drad ret � 2Z2�1 1 jZ2�
m2

mM
, (6)

Drad 1loop � Z2m

µ
2 1 jZ2

m
1

1 1 2jZ2

M

∂
, (7)

for the contributions of the retardation and the “one-loop”
operators, respectively (see [4] for the nomenclature).
Parameter j � 1 distinguishes the contributions due to
the anomalous magnetic moment of the particle with the
mass M.

Two additional irreducible contributions originate from
relativistic corrections to the single Coulomb or magnetic
exchange when we account for the Pauli form factor in one
of the vertices:

DC � 2
Z2�1 1 jZ2�

4
m2

mM
, (8)

DM � 2
Z2m2

4

µ
3 1 2jZ2

m2 1
2 1 3jZ2

M2

∂
. (9)

The last set of irreducible corrections can be loosely de-
scribed as the effect of the retardation on all the relevant
operators that generate nonradiative corrections at lower
orders. This includes the third order retardation, the retar-
dation in the one-loop operator, the irreducible exchange
of two magnetic photons, the retardation in the graph with
magnetic seagull operator on one line, the graph with two
magnetic-Coulomb seagull vertices on both lines, and, fi-
nally, the graph with the magnetic seagull vertex on each
line. The resulting correction reads

Dirr ret �
22
3

Z3 m2

mM
. (10)

Several reducible contributions appear in the second or-
der of time-independent perturbation theory. The first of
them is generated by the so-called double seagull effec-
tive potential. This contribution is very similar to the case
of O �a3 lna� corrections to the positronium decay rate
considered in [1], and it can be easily generalized on the
unequal mass case,

Ds �
Z3m2

mM

µ
6 ln�Zam2� 2

2
e

1
20
3

�ln2 2 1�
∂
.

(11)

The reducible retardation correction can also be derived
as a simple generalization of the result in [1]. The only
difference is that the spin parts of the magnetic currents
also give nonzero contribution to the hfs. For unequal
masses, the result reads

Dret �
Z3m2

mM

µ
8 ln�Zam2� 2

8
3e

1
64 ln2
3

2
82
3

∂
.

(12)
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Also, the so-called ultrasoft contribution [1] should be
considered. We find

Dus � 2
4Z2m2

3

µ
Z
M

1
1
m

∂2

3

µ
4 ln�Zam3�2� 2

1
e

2
5
3

∂
.

For the last reducible contribution to the hfs, the
corresponding nonrelativistic operator O is of the form
BGVhl 1 VhlGB, where G is the reduced Green function
of the Coulomb Hamiltonian, B is the Breit Hamiltonian,
and Vhl is the hard radiative correction to B. The Breit
Hamiltonian in d dimensions has been derived in [4] for
M � m. For different masses, it reads

B � 2
p4

8

µ
1

m3 1
1

M3

∂
1

µ
1

2m2 1
d 2 2
mM

∂
pZad�r�

1
d 2 1
4

Ω
p2

mM
,C

æ
2

��s=,s � �S=,S�,C�
16mM

,

(13)

where C is the Coulomb potential in d dimensions C�r� �
2ZaG�d�2 2 1���pd�221rd22�.

The potential Vhl is the sum of four contributions [6],

Vhl � Vff 1 Vmagn 1 Vbox 1 Vvp , (14)

where the first one arises from the Coulomb photon ex-
change with one of the vertices being either the one-loop
slope of the Dirac form factor or the Pauli form factor,

Vff �
2Za2

3

∑
1

m2

µ
2

1
e

1 2 lnm

∂
1

Z2

M2

3

µ
2

1
e

1 2 lnM 2
3
4

�1 2 j�
∂∏

d�r� ,

(15)

the second one is due to the one-loop anomalous magnetic
moments,
1500
Vmagn � 2�1 1 jZ2�
a

2p

��s=,s � �S=,S�,C�
16mM

, (16)

the third one comes from the hard one-loop box diagrams,

Vbox �
�Za�2

mM

µ
1
e

2 ln�mM� 2
1
3

1
M 1 m 2 2m�1 1 sS�

M 2 m
ln

M
m

∂
d�r� ,

(17)

and the last one accounts for the one-loop vacuum polar-
ization (hadronic vacuum polarization is not included),

Vvp � 2
4Za2

15

µ
1

m2 1
Z2

M2

∂
d�r� . (18)

The structure of Vhl is very similar to the structure of
the Breit Hamiltonian and so the corresponding calculation
goes along the lines of [4]. On this way one recognizes
that both D wave and S wave contributions should be
considered.

Since the D wave part of the new perturbation (16) dif-
fers from that of the original Breit perturbation (13) only
by the overall factor, we can read off the D wave con-
tribution to the O �a3 lna� correction to the hfs from the
corresponding O �a2� correction in positronium (see [4]):

DD � 2
5
12

�1 1 jZ2�
m2

mM
. (19)

To find the contribution of the intermediate S states, we
first project both B and Vhl on to the S wave and then pro-
ceed along the lines described in [4]. Since all the steps in
this calculation have their counterparts in the calculation
described in detail in [4] and since the intermediate formu-
las for the different mass case are lengthy, we refrain from
presenting them here.

Summing up all the relevant contributions, we obtain
the final result for the O �a3 lna� correction to the hfs of
the ground state in the unequal mass case (we put j � 1
below):
Dtot �
Z2m2

m2

µ
8
3

ln
4m

mZa
2

281
180

∂
2

Z2m2

mM
2

Z4m2

mM
2

Z3m2

mM

µ
2 ln

mM
m2 1

2 ln�Za�
3

2 20 ln2 1
101
9

∂

1
Z3m

M 2 m

µ
5 1

4m2

mM

∂
ln

M
m

1
Z4m2

M2

µ
8
3

ln
4M

mZa
2

281
180

∂
. (20)

Equation (20) is one of the principal results of this Letter. If we identify m with the electron mass and M with the muon
mass, Eq. (20) provides the result for the O �a3 lna� correction to muonium hfs. Muonium has been studied extensively
over the years and much is known about this system. In particular, there are certain limits of Eq. (20) that can be checked
against known results. To this end, it is instructive to expand Eq. (20) in powers of m�M up to the first nontrivial order:

DMu �
2Z2

3
ln�Za�

µ
24 1

me

mm

�8 2 Z�
∂

1 Z2

Ω
16
3

ln2 2
281
180

1
me

mm

∑
2Z2 2

32
3

ln2 1
431
90

1 Z

µ
3 ln

mm

me
2

101
9

1 20 ln2

∂∏æ
. (21)

The last equation shows that our result, Eq. (20), correctly reproduces the ln2�Za� terms [5,7,8], as well as the
Z2 ln�Za� single logarithmic term [7,8] and the �me�mm�Z3 ln�Za� ln�mm�me� term [9,10] which are all available in the
literature.
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We now proceed to the discussion of what this result
implies for the phenomenology of the muonium hfs. We
first note that in this case Eq. (21) can be used since
higher powers in the expansion in me�mm have a negli-
gible impact. Since the ln�mm�me� enhanced part of the
O �me�mma3 lna� corrections has been properly taken
into account in a recent compilation of all theoretical
results for muonium hfs [12], we disregard it here. Setting
Z � 1, we then obtain the O �me�mma3 lna� hfs shift:

dnMu � EF
me

mm

a3

p

µ
28
3

ln2 2
223
30

∂
lna . (22)

Numerically, it evaluates to 0.013 kHz; this should
be compared with a similar contribution d0nMu �
20.265�64� kHz, originating from the incomplete calcula-
tion in [11], that has been accounted for in the theoretical
value for muonium hfs in [12].

The difference between the two numbers has significant
impact on the electron to muon mass ratio determination.
It is easy to see that it amounts to the relative shift of
6.2 3 1028 in this ratio (compare with the quoted relative
theoretical uncertainty 2.7 3 1028 [12]) and, if we use the
central value from [12], Eq. (161), the new result reads

mm

me
� 206.768 2784�30� �23� . (23)

Here the first error is related to the error in the theoreti-
cal prediction for the muonium hfs and the second is the
experimental one. The theoretical error in the hfs was
estimated following [12]; the only difference is that we
estimated the uncalculated nonlogarithmic O �me�mma3�
recoil and radiative-recoil corrections as half of their lna

enhanced counterparts in Eq. (21). The uncertainty in the
muonium hfs due to uncalculated higher order corrections
we have obtained in this way is 0.07 kHz, compared to
0.12 kHz in [12].

For positronium, the calculation goes essentially un-
changed, although two facts have to be noticed. First,
since there is an annihilation contribution to the leading
order hfs in positronium, the relative weight of different
corrections changes. Second, one has to take into account
additional annihilation contributions to the Breit and Vhl
operators. These annihilation operators read (S is the spin
of positronium)

Bann �
paS2

m2 d�r� , (24)

and

Vann �
4a2

m2

∑
21 1 ln2 2

µ
13
18

1
ln2
2

∂
S2

∏
d�r� ,

(25)

and they should be added to B and Vhl, respectively.
Finally, for obvious reasons, one should disregard the
O �1�M2� contribution in Eq. (18). Proceeding along the
lines described for the unequal mass case, we derive the re-
sult for the O �ma7� hfs in positronium:
dnPs �
7ma7

12p
lna

µ
2

3
2

lna 1
68
7

ln2 2
62
15

∂
. (26)

Numerically, the new O �ma7 lna� term gives an addi-
tional shift of 20.32 MHz to the theoretical value of the
positronium ground-state hfs, so that the theoretical pre-
diction becomes

nPs
th � 203 391.69�16� MHz . (27)

The theoretical prediction moves closer to the experimen-
tal result in Eq. (1); however, the difference is still signifi-
cant. Since the value of the new O �ma7 lna� contribution
turns out to be roughly one-third of the O �ma7 ln2a� one,
the series look reasonably convergent. For this reason
we estimate the nonlogarithmic O �a3� contribution to the
positronium hfs as being one-half of the logarithmic one.
This is the origin of the uncertainty estimate in Eq. (27).

In conclusion, we have computed O �a3 lna� correc-
tions to the hyperfine splitting of the general QED bound
state keeping the full mass dependence. We then applied
this result to the hfs of the muonium and positronium. The
new value for the muon to electron mass ratio is extracted
from the ground-state hyperfine splitting in muonium. As
for the positronium ground-state hfs, the computed correc-
tion slightly reduces the discrepancy between theory and
experiment. However, it is hard to imagine that higher or-
der corrections can further significantly shift the theoreti-
cal value. In these circumstances, one should perhaps start
taking the discrepancy between the theory and experiment
in the positronium ground-state hfs seriously.
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