
VOLUME 86, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 1 JANUARY 2001
Plateau Behavior in the Chiral Luttinger Liquid Exponent
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The current-voltage power law exponent, a, for electron tunneling into chiral Luttinger liquids at the
fractional quantum Hall edge is found to exhibit a plateaulike structure at a close to 3 as the filling factor,
n, is varied. The presence of a plateau near a � 3 strongly suggests a fundamental connection between
a and the structure of the underlying quantum ground states associated with the robust incompressible
n � 1�3 Hall fluid. However, the position in the inverse filling factor where the plateau occurs can vary
between samples and appears shifted to values higher than expected from theory.
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The low energy properties of conventional metals are
well described by the Fermi-liquid picture when electron
interaction is taken into account wherein long-lived,
Fermionic quasiparticles (holes) comprise the low energy
excitations as the energy approaches zero. In contrast, non-
Fermi-liquid metallic systems are often distinguished by
the absence of a single particle pole in the single particle
spectral function replaced instead by power law depen-
dences yielding a power law density of states for the
tunneling of electrons and a suppression of tunneling at
zero energy. The chiral Luttinger liquid (CLL) represents
an extremely clean example of a non-Fermi liquid [1–4],
resulting from the quasi-one-dimensionality and inherent
strong correlations. Deriving its existence at the edge of
the fractional quantum Hall (FQH) fluid, the CLL contains
phononlike gapless excitations [1,2,5–11] and has been
demonstrated to possess the Hallmark power law tunneling
density of states observable in tunneling current-voltage
(I-V ) characteristics [1–4,6,8] in novel cleaved-edge over-
growth devices [12]. The observed power laws are of ex-
traordinary quality and can span 41

2 decades in current and
11

2 decades in excitation voltage, a dynamic range far sur-
passing other promising Luttinger liquid systems such as
carbon nanotubes [13,14], quasi-1D organic salts [15,16],
or blue bronze conductors [17,18]. Furthermore, it is found
that the power law behavior is not restricted to incom-
pressible FQH fluids at special rational filling factors
and is in fact present for general filling factors with the
exponent, a, varying roughly as 1�n for 1�n . 1.3
[3,4]. The observed behavior has presented a puzzle. For
the incompressible n � 1�3 FHQ fluid, the low energy
edge excitations are decoupled from the bulk excitations
which contain a gap; thus the edge constitutes a truly one-
dimensional system which theory predicts to be a CLL
with a tunneling exponent of exactly 3 [1,2,5,6]. In
contrast, at intermediate filling factors between incom-
pressible Hall fluids, e.g., at the n � 1�2 compressible
composite Fermion fluid, the existence of a power law
I-V was not fully anticipated [3]. At present, while a hier-
archical picture of incompressible fluids is able to produce
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power law behavior at a set of rational filling fractions
[2], and a recent theory based on the composite Fermion
picture predicts power laws at continuous values of 1�n

[19] (more precisely Hall resistivity, rxy), the predicted
steplike plateau features in a stand in contrast to the fea-
tureless linear behavior of the experiment. These theories
are based directly on our understanding of the relation
between the edge mode structure and the topological char-
acterization of FQH states, as well as the intermixing of
copropagating and counterpropagating edge modes into
charged and neutral varieties. Two major issues arise.
First, the absence of plateaus for 1�n . 1.3 is difficult
to reconcile with current understanding even without ac-
counting for the finite width of quantized Hall plateaus.
Second, the lack of a plateau near bulk filling, n � 1�3
�1�n � 3�, despite a plateau in rxy indicates that the
edge tunneling characteristic is not solely dictated by the
bulk Hall resistivity, again in contradiction to expectation.
This absence of structure has even been invoked by some
workers as evidence that the existence of CLL behavior
is not conclusive [13,20,21]. Because the n � 1�3 FQH
fluid possesses the largest gap and is robust, evidence for
plateauing in the exponent is of critical importance.

In this Letter we report the clear observation of a plateau
feature for the a versus 1�n dependence with an a value
close to 3. Our results obtained in two sets of samples
are based on careful analysis of I-V tunneling data with
precise fitting to the theoretical I-V dependence due to
Chamon and Fradkin [22], followed by a statistical F-test
for the x2 of the a versus 1�n fits to establish the presence
of a plateau feature with a confidence level exceeding 99%
while rejecting a simple linear dependence. Characteriz-
ing the a versus 1�n plot by the slope, S � da�d�1�n�,
in the first set of samples S exhibits an abrupt change
from 1.15 6 0.3, reflecting a roughly a � 1�n depen-
dence, to 0.15 6 0.15 as 1�n increases beyond 2.76, con-
stituting a reduction of more than a factor of 7 in S. This
plateau region of reduced slope extends from 1�n � 2.76
to 3.33 before reverting to a value of �1.05 above 1�n �
3.33. Similarly, in a second set, S abruptly reduces from
2000 The American Physical Society 143
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0.33 6 0.3 for 1�n , 4.12 to 20.14 6 0.18 for 4.12 ,

1�n , 4.76 before increasing rapidly, e.g., S . 1.5 for
1�n . 4.76. In both sets of data the plateau region is cen-
tered about a value for a of 2.7, slightly below 3. Even
though these values of a � 3 are in good agreement with
theory, the corresponding 1�n values vary between sets
and are shifted substantially to the high side of the theoreti-
cally predicted position of between 2 and 3 in rxy��h�e2�
[2,19]. Recent theories are attempting to address the origin
of such discrepancies [23–28].

The tunneling experiments are performed on samples
grown by the cleaved-edge-overgrowth technique [12,29].
Please see Refs. [3,4] for details. Samples 1 and 2 com-
prise the first sample set and possess an identical two-
dimensional electron gas (2DEG) from the same wafer
but differ in the subsequent cleaved-edge overgrowth.
The 2DEG is of density 1.08 3 1011 cm22 and mobility
3 3 106 cm2�V s. Sample 3 has a 2DEG density of
0.61 3 1011 cm22 and a mobility of 8 3 105 cm2�V s.
The Al0.1Ga0.9As barrier thickness for samples 1, 2, and
3 are 90, 125, and 50 Å, respectively. Judging from the
quantum Hall characteristics, these samples are of higher
quality than those which previously exhibited a � 1�n

behavior [4]. The n 1 GaAs is doped to �1.4 2 3

1018� cm23 carrier density, yielding a chemical potential
of 65–83 meV from the GaAs band bottom (70–88 meV
from the impurity band bottom), while the chemical
potential of the 2DEG is approximately 25 meV (15 meV)
above band bottom for samples 1 and 2 (3). Charge re-
distribution can take place across the barrier due to this
chemical potential imbalance.

In Fig. 1 we show the longitudinal and Hall resistances
for the 2DEG in samples 1 and 3 at the respective tempera-
tures of 195 and 50 mK. The n � 1�3 fractional quan-
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FIG. 1. Magnetic field traces of the longitudinal resistance
�Rxx� and Hall resistance �Rxy�, (a) for sample 1 at a temperature
of 195 mK and (b) for sample 3 at 50 mK.
144
tum Hall effect occurs at 13.4 and 7.6 T, respectively. In
Figs. 2–4 we presents log-log plots of the tunneling I-V
characteristics between the 2DEG and the n 1 GaAs bulk
metal (solid curves) for samples 1, 2, and 3, respectively,
in a wide range of magnetic fields/filling factors in order
to deduce the behavior of the power law exponent, a, as
a function of 1�n. Successive curves are shifted in the
positive direction on the horizontal axis by 0.3 units (a
factor of 2) for clarity, and curves for which a sufficient
dynamic range is available to yield a meaningful exponent
are included. The dashed curves represent best fits to data
as described below. Ideally, an I-V curve consists of three
regimes: (a) a low voltage bias regime with a linear I-V
where the thermal energy, kT , dominates over the volt-
age bias energy, eV , �eV # 2pkT � [1,2], (b) an interme-
diate voltage bias regime �2pkT # eV # TS� exhibiting
the important power law I-V behavior [1,2,22], and (c) a
high bias saturation regime �eV . kTS� in which I-V ap-
proaches linearity again and where the tunneling conduc-
tance saturates to the two-terminal conductance of the
2DEG as the tunnel barrier becomes transparent. Here TS

represents a cross-over temperature with kTS the crossover
energy above which saturation takes place [22]. In fact es-
sentially all data for samples 1 and 3 exhibit this generic
behavior while noting that the thermally dominated low
voltage bias, linear regime (a) is visible only when it is
above the noise floor ��4fA�. Aside from the traces for
which the saturation region is not included, the only sig-
nificant exceptions occur for sample 3 in a few traces at
the largest 1�n values, where there is evidence of an ad-
ditional parallel channel for tunneling when the conduc-
tance falls below �0.5 3 1028 S (R exceeds 2 3 108 V).
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FIG. 2. Log-log plot of the I-V characteristics (solid lines)
for electron tunneling from the FQH edge into the bulk doped
n 1 GaAs in sample 1 at various magnetic fields from 12 to
19 T in steps of 0.5, 18, and 18.5 T excluded. Corresponding
filling factors vary from 2.69 to 4.26. Dashed lines represent
best fits to Eq. (1). Successive curves are shifted by 0.3 units (a
factor of 2) in the x direction for clarity.
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FIG. 3. Log-log plot of I-V characteristics (solid lines) for
sample 2 at B � 7.24, 7.5, 7.76, 8.02, 8.28, 8.53, 8.79, 9.31,
9.83, 10.34, 10.86, 11.38, 11.9, 12.4, and 12.9 T �1.611 ,
1�n , 3�. Dashed lines represent best fits. Note x shifts for
clarity.

In contrast sample 2 does not show an ideal saturation
regime. This nonideality can arise from the opaqueness
of the thicker tunnel barrier of 125 Å.

To establish the presence of a plateau feature in the ex-
ponent, a, we extract a in a systematic way by fitting the
entire I-V range containing the three bias regimes to the
Chamon-Fradkin expression for the tunnel current, I , at
voltage, V , with the notation b � a 2 1, r � 2pT

TS
:
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which represents a universal scaling formula for tunnel-
ing into a Luttinger liquid with exponent, a, in conjunc-
tion with the constraint that Va � V 1 IRs, where Va

is the voltage applied on the device across contacts and
Rs is a 2DEG series resistance. Since the temperature is
known, three parameters are needed: a, TS , and a 2DEG
series resistance Rs. The additional parameter Rs is needed
to properly fit the saturation regime since at small fill-
ing factors (large 1�n) the background from the longitu-
dinal resistance of the 2DEG �Rxx� can be substantial (of
order 100 kV). For samples 1 and 3, a full fit over the
entire range of I-V can be accomplished. The fitted I-V
curves are plotted as dashed lines in Figs. 2 and 4. As
evidenced by the nearly complete overlap of the fit and
data in a majority of the traces, excellent fits are achieved.
For sample 2, the absence of a true saturation regime pre-
cludes a full fit and the fitting is only performed within
the low and intermediate bias regimes containing the linear
and power law dependences. The affect on a is found to
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FIG. 4. Log-log plot of I-V characteristics (solid lines) for
sample 3 at B � 8.55, 8.75, 9.15, 9.58, 10.0, 10.4, 10.8, 11.2,
11.6, 12.0, 12.2, 12.4, and 12.8 T �3.605 , 1�n , 5.082�.
Dashed lines represent best fits. Note x shifts for clarity.

be minimal �,0.1� in traces which exhibit a sizable power
law dynamic range occurring for 1�n . 2. For 1�n # 2
where a , 2, nonlinearity arising from bias-induced re-
shaping of the tunnel barrier leads to distorted fits and sys-
tematic errors in a estimated to be less than 0.15. However,
these 1�n # 2 data points turn out not to affect our con-
clusions. In sample 3 the largest 1�n, where 1�n . 4.9,
needs explanation. For these the intermediate bias regime
contains two subregions of differing exponents with a1
characterizing the lower portion crossing over to a2 which
characterizes the higher portion. The relevant exponent
is a2 for the following reasons. First of all, for traces
with lower 1�n, within noise, a is always either mono-
tonically increasing or nearly flat with increasing 1�n and
this trend is consistent with theoretical expectations. Sec-
ond, the lower, a1 subregion occurs at low conductances
(below 0.5 3 1028 S), where residual parallel tunneling
channels can have an effect. In fact, at 1�n � 4.446 cor-
responding to B � 11.2 T, excess conductance is already
visible at bias voltages 10 # V # 100 mV [note the dis-
placement of a factor of log�27� for clarity], suggesting the
presence of a parallel channel. In the traces in question,
the low conductance regime is reached at higher values of
voltage bias due to the large value of the exponent, a2, and
one may expect the effect of parallel channels to be more
pronounced. Despite residual parallel conduction, the vast
majority of traces are fully fitted by Eq. (1).

Figure 5 summarizes the fitting parameters a, TS ,
and Rs deduced for the two sets of samples versus 1�n.
Results for samples 1 and 2 containing identical 2DEG
are presented together. We focus our attention on a in
panels (a) and (c). To establish unequivocally the pres-
ence of a plateau we first fit the data to curves contain-
ing (i) three line segments where the middle exhibits
a reduced slope, (ii) two line segments, and (iii) single
145
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FIG. 5. The power law exponent, a, for samples 1 and 2,
versus 1�n, in (a) [for sample 3 in (c)]. Representative error bars
are as shown, and solid curves are as labeled. The parameters
TS and Rs are summarized in panels (b) and (d).

straight lines, indexed by 3, 2, and 1, respectively. We
next apply the statistical F-test on the random variable
F�n, m� � ��x2

i 2 x
2
j ��x

2
j ����dfi 2 dfj��dfj� [30] to

compare the x2’s, where �i, j� � 1, 2, 3. Here dfi �
N 2 pi represents the degree of freedom of the ith fit
with N being the number of data points and pi the number
of fit parameters, while n � dfi 2 dfj and m � dfj .
When F exceeds the criterion for an integrated proba-
bility of 99% in the F�n, m� distribution with n and m
degrees of freedom, the jth fit is established while the ith
fit is rejected with confidence exceeding 99%. For the
first sample set the functional form with three line seg-
ments joined continuously (six parameters) is established
while a simple linear fit (two parameters) is rejected
(see Fig. 5a) as well as a two line (four parameter) fit.
For the second set, both the three segment and two
segment fits are viable while the single line fit is rejected
(Fig. 5c). In both sets the plateau region occurs at a �
2.7 with corresponding reduced slopes of 0.15 6 0.15 and
20.14 6 0.18. The respective F values for the two sets
are 31.1 compared to the 99% confidence level criterion of
F�4, 45� � 3.79 (N � 51, x

2
3 � 0.47, x

2
1 � 1.77) and

17.9 compared to the average �F�4, 15� 1 F�2, 17���2 �
5.5 (N � 21, x

2
3 � 0.45, x

2
2 � 0.66, x

2
1 � 2.26). The

result for the first set is robust even when the lowest
seven points �1�n # 2� are removed. In terms of 1�n

the plateau region occurs at 2.76 , 1�n , 3.33 and
4.12 , 1�n , 4.76, respectively. These positions are
shifted to higher values compared to the theoretical
prediction of 2 , 1�n , 3.3 [2,19], taking into account
the finite Hall plateau width. In the first sample set, the
position corresponds well with the bulk n � 1�3 FQH
plateau. On the other hand, in the second set it is shifted
substantially beyond the position of the n � 1�3 plateau.
At present it is not well understood how this shift occurs,
146
although one possibility arises from edge reconstruction
due to density gradients [25].
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