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We develop an approximation scheme for the quantum mechanics of N DO-branes at finite tempera-
ture in the ’t Hooft large-N limit. The entropy of the quantum mechanics calculated using this approxi-
mation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional nonextremal black

hole with O-brane charge.

This result is in accordance with the duality conjectured by Itzhaki,

Maldacena, Sonnenschein, and Yankielowicz [Phys. Rev. D §8, 046004 (1998)]. Our approximation
scheme provides a model for the density matrix which describes a black hole in the strongly coupled

quantum mechanics.
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Properties of black holes in quantum theories of gravity
have intrigued physicists for many years. In recent years
much progress has been made in understanding some of
these properties using string theory. However, because
string theory is usually formulated perturbatively about a
given spacetime background, it has been difficult to obtain
a unified and complete description of black hole physics.
In the past few years nonperturbative formulations of string
theory have been proposed in terms of large-N gauge theo-
ries. These formulations give new hope for understanding
some of these fundamental issues.

In particular, Maldacena’s conjecture gives a promising
arena to answer some of these questions. Maldacena’s con-
jecture [1] relates string theories in anti—de Sitter back-
grounds to conformal field theories in a large-N limit.
However there is no “free lunch.” In this framework, seem-
ingly obvious questions on the string theory side are hard
to formulate on the gauge theory side. Moreover, in the
range of parameters where semiclassical string theory may
be used to construct black hole geometries, the dual gauge
theory is strongly coupled. This makes understanding
black hole states very difficult.

The version of Maldacena duality to be considered here
relates black holes in ten dimensions with O-brane charge
to supersymmetric gauged SU(N) quantum mechanics
with sixteen supercharges [2]. The black holes in question
have a nonzero Hawking temperature 7. The dual quan-
tum mechanics is to be taken at the same finite tempera-
ture. The black hole has a free energy, which arises from
its Bekenstein-Hawking entropy,
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Duality predicts that the quantum mechanics should have
the same free energy. The supergravity description is ex-
pected to be valid when the curvature and the dilaton are
small near the black hole horizon. This regime corresponds
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to the ’t Hooft large-N limit of the quantum mechanics,
when the dimensionless effective coupling g%(MN /T3 is
large.

In this Letter we describe a set of approximations that
can be applied to the quantum mechanics in the regime
of interest. Using these techniques we calculate the finite
temperature partition function of the quantum mechanics.
Over a certain range of temperature our results can be well

fit by a power law,
1.7
T
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This is in quite good agreement with the black hole predic-
tion (1): the exponents differ by 6% while the coefficients
of the power laws differ by 26%. (An additive constant
appears in the approximation for the free energy. We will
generally ignore this “ground state degeneracy,” since it
seems to be an artifact of the approximation when applied
to systems with a continuous spectrum. Similar behavior
was noted in [3].) We believe that this is the first nontriv-
ial direct test of a strong/weak coupling duality that does
not rely on supersymmetric nonrenormalization theorems
or special properties of Bogomolnyi-Prasad-Sommerfield
states. Although in this paper we are primarily interested
in the thermodynamics of the quantum mechanics, our ap-
proximation scheme should also be useful for addressing
questions about the spacetime structure of the black hole,
perhaps along the lines of [4,5].

The basic idea is to treat the @ (N?) degrees of freedom
of the quantum mechanics as statistically independent, us-
ing a type of mean field approximation. This assumption
is motivated by the overall N> dependence of the free en-
ergy (1). The approximation involves constructing a trial
action Sy from the full action S. All quantities can then
be systematically computed as an expansion in powers of
S — So. The terms in the trial action are fixed by solv-
ing a truncated version of the Schwinger-Dyson equations

BF = —0.79 — 2.ON2(
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of the quantum mechanics. This procedure can be viewed
as resumming an infinite number of Feynman diagrams.
Since we are interested in large-N behavior, we will only
resum planar diagrams. Thus, in our approximation, the
overall N? factor in the free energy (2) and the appearance
of g3m only in the combination gYmN is guaranteed. The
crucial test of the approximation is to obtain the correct
power-law dependence of the thermodynamics on the ef-
fective dimensionless coupling g%(MN /T3. Henceforth we
adopt units in which g%MN = 1.

We now sketch the application of the Gaussian approxi-
mation [3] to gauged SU(N) supersymmetric quantum me-
chanics with sixteen supercharges. Further details will
appear in [6]. To avoid explicit breaking of supersymmetry
by the approximation, we adopt an unconstrained super-
field formulation. This ensures that we recover exact su-
persymmetry in the zero temperature limit. We will use an
N = 2 superspace. This means that only an SO(2) X G,
subgroup of the SO(9) R-symmetry is manifest.

For more details on notation see [3]. N = 2 super-
space has an SO(2) R-symmetry, with spinor indices
a, B = 1,2 and vector indices i,j = 1,2. The N = 16
multiplet decomposes into a set of real scalar superfields
@, transforming in the 7 of G, plus a gauge superfield
I'y. @ has components ¢, ¢,, and f, while ', has
components Ag, X', Xa» Aa, and d. We impose the
supersymmetric gauge condition D*I', = 0. This sets
0Ag/0t =0,d =0, and A = %ax/at. This is a conve-
nient gauge fixing, as this gauge condition helps make the
approximation compatible with Ward identities [6]. To
the action we must add a ghost kinetic term (but no gauge
fixing term).

We are interested in the finite temperature behavior of
the quantum mechanics. As usual we compactify the Eu-
clidean time coordinate on a circle of circumference S,
which is identified with the inverse temperature, and ex-
pand fields in terms of Matsubara frequencies. For ex-
ample, we write

) 1 > o
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Note that in Euclidean space the zero mode of the gauge
field, which we denote Agg, survives as a physical degree
of freedom (fluctuations in Ag are eliminated by our gauge
condition).

Throughout this paper we use the following expression

for the free energy in this scheme:

BF =~ BFy + (S — Sodo — »(SAco. (4

Here BF is the free energy of the trial action, and {-)o
denotes an expectation value computed using Sg. Siip
refers to cubic terms in the original gauge plus ghost
action, and the subscript C denotes a connected correlation
function. It is straightforward, though tedious, to compute
higher order terms in the expansion of SF. In principle,

this could be used as a check on the validity of the
approximation.
We make the following ansatz for the trial action:
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Here all fields (except the gauge field) appear in Gaussian
form. The gauge field must be treated in a special way,
owing to its periodicity properties. To do this we intro-
duced the timelike Wilson loop operator U, which can be
expressed in terms of the gauge zero mode,

B
U=Pelf0A° = ¢!VBAw, (6)

This makes it manifest that, at finite temperature, Ay ~
Ag + 27/ is periodic. As a trial action for the gauge
field we have adopted the unitary one-plaquette model ac-
tion. As A varies the trial action goes through a Gross-
Witten phase transition at A = 2 [7].

The key step in the approximation is to find a closed set
of “gap” equations for the dressed propagators gl A7,
appearing in (5). Again, the gauge field must be treated
as a special case. All other propagators are obtained by
demanding stationarity of the quantity (4). (This quantity
can be identified with the two-loop 2PI effective action of
[8].) Up to contributions from the gauge field, it can be
shown that this procedure correctly resums all one-loop
self-energy corrections to the propagators.

The gap equation for A is obtained from the Schwinger-
Dyson equation for (U) that arises from the change of
variables U — gU with g € SU(N). Demanding that this
equation hold with respect to the one-plaquette measure
yields
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T _ T - - = . 7
(TrU)o :83/2 r<U<5A00 2 8Aw//co @

This equation resums one-loop corrections to the Wilson
loop, in the same sense that (4) resums one-loop correc-
tions to the propagators. At large N the terms on the
right-hand side factorize into a gauge field correlator times
matter field correlators; the terms involving the gauge
fields may be computed using the results of [7]. As (4) and
(7) are somewhat lengthy expressions, we will not present
them here.

The gap equations can be solved numerically, using the
methods discussed in Appendix B of [3]. The basic strat-
egy is to start at high temperature, where the gap equations
can be solved semianalytically, then use Newton-Raphson
to solve the gap equations at a sequence of successively
lower temperatures.

In principle, the resulting Gaussian action contains a
great deal of information about correlation functions in
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the quantum mechanics. But in this Letter we will just
concentrate on the behavior of three basic quantities: the
free energy, the Wilson loop, and the mean size of the state.

At high temperatures (8 < 1), where the gauge theory
is weakly coupled, we find that the free energy of the
system is

BF = 6logB + O(1). (8)

This result can be obtained analytically: the gap equations
are dominated by the bosonic zero modes, and the free
energy is dominated by BFj.

In general, for a weakly coupled theory in 0 + 1 di-
mensions, one would expect the free energy to behave
like log3. But note that, even though the gauge theory is
weakly coupled at high temperature, the perturbation se-
ries is afflicted with IR divergences. Thus, to determine the
coefficient of the logarithm (which depends on the value
of the dynamically generated IR cutoff) one must resum
part of the perturbation series. This is a well-known phe-
nomenon in finite temperature field theory [9]. In any case,
we expect a priori that the Gaussian approximation gives
good results in the high temperature regime.

As the temperature is lowered the behavior of the free
energy changes: at 8 = (.7 we find that it begins to roll
over and fall off as a nontrivial power of the temperature.
In the range 1 < 8 < 4 the numerical results for the free
energy are well fit by (2). This fit to the numerical results
is illustrated in Fig. 1. Note that supersymmetry is crucial
in making such power-law behavior possible. Without
supersymmetry the free energy would behave as SF =
BEy in the low temperature regime 8 > 1, where Ej is
the ground state energy of the system.

We obtained (2) by performing a Levenberg-Marquardt
nonlinear least-squares fit to 75 numerical calculations
of the free energy, carried out in the temperature range
1 = B = 4. To estimate the uncertainty in the best fit
parameters we varied the window of B8 over which the
fit was performed (fitting over the ranges 2 < 8 < 4 and
1 < B < 3), which leads to —0.79 = 0.06, —2.0 = 0.1,
and —1.7 = 0.2.

beta

-2.75

FIG. 1. The solid curve is the power-law fit (2) for BF. The
data points are calculated from numerical solutions to the gap
equations.
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As we go to still lower temperatures, we find that the en-
ergy d(BF)/dB calculated in the Gaussian approximation
begins to drop below the energy of the black hole. In fact
the Gaussian energy becomes negative at about § = 5.8.
Ultimately, as 8 — o, the Gaussian energy does asymp-
tote to zero, as required by the N = 2 supersymmetry
which is manifest in the approximation. But a negative en-
ergy clearly reflects some problem with the approximation.

Fortunately, we can be rather precise about exactly
where the approximation is going wrong: the difficulty is
with the Schwinger-Dyson gap equation we have been us-
ing to fix the value of the one-plaquette coupling A. Al-
though we do not know how to write a better gap equation
for A, we can give a prescription for fixing A that will
allow us to obtain reasonable results at much lower values
of the temperature. This may be regarded either as a check
on our understanding of why the approximation is break-
ing down or as a way of building a model for the black hole
that can be used at lower temperatures. Our prescription
for fixing A is simply that, when 8 > 2.5 (the midpoint
of our range 1 = B8 = 4), we choose A so that the free
energy is given by (2). The energy E = 9(8F)/d8 calcu-
lated with this prescription is shown in Fig. 2. [One might
consider other prescriptions for fixing A. For example,
the Schwinger-Dyson gap equation could be replaced
with a condition of SO(9) invariance: ((X?)?) = ((¢%)?).
This prescription works fine at high temperatures, but has
no real solutions in the low temperature regime 8 = 1.
Evidently, the lack of manifest SO(9) invariance in the
superfields cannot be compensated just by adjusting A.]

With this prescription we find that A increases mono-
tonically with 8. A Gross-Witten phase transition takes
place when A = 2; this value is reached at 8 = 7.8. Thus
a phase transition takes place as the system moves into the
supergravity regime [3].

By adopting the prescription of fitting BF to a power
law, we cannot say anything about the order of the phase
transition. If one takes the Schwinger-Dyson result for A

energy
100
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FIG. 2. Energy vs 8 on a log-log scale. For 8 > 2.5 fixing
A by fitting BF to a power law leads to the solid middle line,
while the Schwinger-Dyson gap equation for lambda leads to the
lower dashed line. The upper dot-dashed line is the semiclassical
energy of the black hole.
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FIG. 3. Range of eigenvalues (radius of the Wigner semicircle)

vs . The upper solid curve is for the scalar fields in the scalar
multiplets. The lower dotted curve is for the scalar fields in
the gauge multiplet. The dot-dashed curve is the Schwarzschild
radius of the black hole. These results were calculated with SF
fit to a power law for 8 > 2.5.

seriously, then the Gross-Witten transition occurs at 8 =
14.2, and is second order (the second derivative of the free
energy drops by 0.01 in crossing the transition).

Our prescription for choosing A begins to break down
at about 8 = 14, as we find that A rapidly diverges as
B approaches 14. By itself, this is not necessarily a prob-
lem: infinite A simply means that the Wilson loop is uni-
formly distributed over U(N). But, unfortunately, we do
not have a good prescription for continuing past this tem-
perature. Evidently, some of the other gap equations (not
just the gap equation for A) start to break down at this
point. Note that this breakdown does not occur until well
into the strong coupling regime, as an inverse temperature
B = 14 corresponds to an effective gauge coupling ggff =
B3 =3 x 103

Finally, let us comment on the average “size” of the
state. In our approximation the scalar fields X(7) and
¢“?(7) are Gaussian random matrices, and their eigenvalues
obey a Wigner semicircle distribution. We can define the
size of the state in terms of the quantities

Rt = 5 (X' (1) o,

scalar
1 a
Réauge Y TI‘<[¢ (T)]2>0 .

The radius of the Wigner semicircle, given by 24/R2, is
shown in Fig. 3. Note that the radius stays fairly constant
in the region corresponding to the black hole. However,
because the superfield formalism we are using does not
respect the full SO(9) invariance, the radius measured in
the scalar multiplet directions is not the same as the radius

€))

measured in the gauge multiplet directions. At 8 = 14
we find

2Rcatar = 1.81, 2Rgauge = (0.80.

This shows that, as expected, the trial action does not
respect the underlying SO(9) invariance. Nonetheless, the
trial action may provide a useful approximate description
of the black hole density matrix in the supergravity regime.

In Fig. 3 we have also plotted the Schwarzschild radius
of the black hole Uy/27 = 1.76372/>. (Our Higgs fields
are related to the radial position by X = r/2ma’, while
Ref. [2] sets U = r/a’.) Note that, as the temperature de-
creases, the Schwarzschild radius becomes much smaller
than the radius of the eigenvalue distributions. It seems
appropriate to identify the radius of the eigenvalue dis-
tributions with the size of the region U < (g3mN)'/? in
which ten-dimensional supergravity is valid.
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