
VOLUME 86, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 FEBRUARY 2001

1422
Gravitationally Bound Monopoles

Betti Hartmann
Fachbereich Physik, Universität Oldenburg, Postfach 2503, D-26111

Oldenburg, Germany

Burkhard Kleihaus
Department of Mathematical Physics, University College, Dublin, Belfield,

Dublin 4, Ireland

Jutta Kunz
Fachbereich Physik, Universität Oldenburg, Postfach 2503, D-26111

Oldenburg, Germany
(Received 26 September 2000)

We construct monopole solutions in SU(2) Einstein-Yang-Mills-Higgs theory carrying magnetic charge
n. For vanishing and small Higgs self-coupling, these multimonopole solutions are gravitationally bound.
Their mass per unit charge is lower than the mass of the n � 1 monopole. For large Higgs self-coupling
only a repulsive phase exists.
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Introduction.—Magnetic monopoles arise as topologi-
cal defects in theories which undergo spontaneous sym-
metry breaking. In general, magnetic monopoles exist if
the mapping of the vacuum manifold, associated with the
symmetry breaking, onto the two-sphere is nontrivial. The
existence of magnetic monopoles is consequently a generic
prediction of grand unification. If magnetic monopoles
were indeed present in the Universe, they would have a
host of astrophysical and cosmological consequences.

Here we consider magnetic monopoles [1] and multi-
monopoles [2–5] in SU(2) Yang-Mills-Higgs (YMH) the-
ory, with the Higgs field in the triplet representation. These
solutions are globally regular. Since their magnetic charge
is proportional to their topological charge, the regular
monopole and multimonopole solutions reside in topo-
logically nontrivial sectors of the theory. In contrast, the
monopole-antimonopole pair solutions [6,7] are topologi-
cally trivial.

In the Bogomol’nyi-Prasad-Sommerfield (BPS) limit
[8,9], where the strength of the Higgs self-interaction
potential vanishes, the mass of the monopole and multi-
monopole solutions saturates its lower bound, the Bogo-
mol’nyi bound. In particular, the mass per unit charge of
an n . 1 monopole is precisely equal to that of the n � 1
monopole. There is no interaction between the monopoles
in the BPS limit, because the spatial components of the
stress tensor vanish [10]. The Higgs field is massless
and mediates a long range attractive force which exactly
cancels the long range repulsive magnetic force of the
U(1) field [11,12].

For finite Higgs self-coupling, however, the Higgs field
is massive and therefore decays exponentially. Conse-
quently the long range magnetic field dominates at large
distances, leading to the repulsion of like monopoles [13].
In particular, as verified numerically for n � 2 and 3
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monopoles [4], the mass per unit charge of an n . 1
monopole is higher than the mass of the n � 1 monopole.
Thus for finite Higgs self-coupling there is only a repulsive
phase between like monopoles.

Let us now consider the effect of gravity on the mono-
pole solutions. When gravity is coupled to YMH theory, a
branch of gravitating n � 1 monopole solutions emerges
smoothly from the flat space monopole solution [14]. The
branch extends up to some maximal value of the gravi-
tational strength, beyond which the size of the monopole
core would be smaller than the Schwarzschild radius of
the solution [14]. Along the branch with increasing gravi-
tational strength, the mass of the gravitating monopole
solutions decreases monotonically. Finally a degenerate
horizon forms [14–17].

Similarly, in the presence of gravity a branch of gravitat-
ing monopole-antimonopole pair (MAP) solutions emerges
from the flat space MAP solution [18].

In this Letter we investigate how gravity affects the
static axially symmetric multimonopole solutions of
SU(2) YMH theory [2–4] and whether the inclusion of
gravity allows for an attractive phase of like monopoles.
For a given topological charge n, we find a branch of
globally regular and asymptotically flat multimonopole
solutions, emerging smoothly from the corresponding
flat space solution, and extending up to some maximal
value of the gravitational strength. Along the branch
the mass of the solutions decreases monotonically. And,
indeed, we find a region of parameter space, where the
mass per unit charge of the gravitating multimonopole
solutions is lower than the mass of the gravitating
n � 1 monopole. Here the multimonopole solutions
are gravitationally bound. Thus gravity allows for an
attractive phase of like monopoles, not present in flat
space.
© 2001 The American Physical Society
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Ansatz.—We consider SU(2) Einstein-Yang-Mills-
Higgs (EYMH) theory with action
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with Newton’s constant G, Yang-Mills coupling constant
e, and Higgs self-coupling constant l.

In flat space SU(2) YMH possesses multimonopole so-
lutions with axial symmetry for any topological number
[2]. For topological number n $ 3, solutions with less
symmetry exist [5]. Here we extend the axially symmet-
ric multimonopole solutions to curved space. We choose
isotropic coordinates with metric [19]

ds2 � 2f dt2 1
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l
f

r2 sin2u dw2,

(2)

where f, m, and l are only functions of r and u. The
ansatz for the purely magnetic gauge field is [3,19]

Am dxm �
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and for the Higgs field the ansatz is [3,4]

F � �F1tn
r 1 F2tn

u � . (4)

The symbols tn
r , t

n
u , and t

n
f denote the dot products of the

Cartesian vector of Pauli matrices, �t � �tx , ty , tz�, with
the spatial unit vectors

�en
r � �sinu cosnf, sinu sinnf, cosu� ,

�en
u � �cosu cosnf, cosu sinnf, 2 sinu� , (5)

�en
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respectively. The winding number n represents the topo-
logical charge of the solutions. The four gauge field
functions Hi and the two Higgs field function Fi de-
pend only on the coordinates r and u. For n � 1 and
H1 � H3 � F2 � 0, H2 � H4 � K�r� and F1 � H�r�,
the spherically symmetric ansatz of Ref. [14] is recovered.

We fix the residual gauge degree of freedom [3,19] by
choosing the gauge condition r≠rH1 2 ≠uH2 � 0 [19].

For asymptotically flat magnetically charged solutions
the boundary conditions at infinity are

f � m � l � 1, H1 � H2 � H3 � H4 � 0,

F1 � h, F2 � 0 . (6)

Requiring the solutions to be regular at the origin (r � 0)
leads to the boundary conditions

≠rf � ≠rm � ≠r l � 0, H1 � H3 � 0,

H2 � H4 � 1, F1 � F2 � 0 . (7)

The boundary conditions along the r and the z axes are
determined by the symmetries of the solutions. On both
axes the functions H1, H3, and F2 and the derivatives ≠uf,
≠um, ≠ul, ≠uH2, ≠uH4, and ≠uF1 have to vanish.

Introducing the dimensionless coordinate x � rhe and
the Higgs field f � F�h, the equations depend only on
two coupling constants, a and b,

a2 � 4pGh2, b2 �
l

e2 . (8)

The mass M of the multimonopole solutions can be
obtained directly from the total energy-momentum “ten-
sor” tmn of matter and gravitation, M �

R
t00 d3r [20], or

equivalently from M � 2
R

�2T0
0 2 Tm

m�p2g dr du df,
yielding the dimensionless mass m �

e
4ph M.

Results.—Subject to the above boundary conditions, we
solve the equations numerically [21]. We start from the flat
space (multi)monopole solutions [4] and increase a. Then
branches of gravitating (multi)monopole solutions extend
up to maximal values of a, a�n�

max�b�, which increase with
increasing topological charge and decrease with increasing
strength of the Higgs self-coupling.

As the globally regular (multi)monopole solutions ap-
proach the critical value of a, a degenerate horizon starts
to form [14–16]. Indeed, the exterior of the critical solu-
tion corresponds to the exterior of an extremal Reissner-
Nordstrøm (RN) black hole with magnetic charge n
[14,15,17].

In Fig. 1 we show the metric function f of the gravi-
tating n � 2 multimonopoles in the BPS limit for several
values of a. With increasing a the function f decreases
monotonically and approaches the metric function fRN �
� x�a

n1x�a �2 of the extremal RN solution with magnetic charge
n � 2. At a � 1.5, its value at the origin is already
very small, close to the value fRN�0� � 0, representing the
degenerate horizon of the extremal RN solution. Also, the
angle dependence of the metric function is seen to diminish
and disappear, as the critical value of a is approached.

FIG. 1. The metric function f is shown as a function of the
compactified dimensionless radial coordinate x̄ � x��1 1 x� for
three values of the angle u for the n � 2 multimonopole solu-
tions in the BPS limit, for a sequence of values of a, approach-
ing the critical value acr.
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Likewise, the Higgs field function f1, shown in Fig. 2,
approaches the value f

RN
1 � 1 of the RN solution [22].

The Higgs field function f2 and the gauge field functions
approach their respective RN values as well. Satisfying
Israel’s theorem, the RN solution is spherically symmetric.

The mass per unit charge of the (multi)monopole solu-
tions decreases with increasing a. In the BPS limit, for
a � 0 the mass per unit charge is precisely equal to the
mass of the n � 1 monopole. For a . 0, however, we ob-
serve that the mass per unit charge of the multimonopoles
is smaller than the mass of the n � 1 monopole. In par-
ticular, the mass per unit charge decreases with increasing
n. The mass per unit charge of n � 2 and 3 multi-
monopoles in the BPS limit is shown in Fig. 3. Thus
in the BPS limit there is an attractive phase between like
monopoles, not present in flat space. Moreover, multi-
monopoles exist for gravitational coupling strength, too
large for n � 1 monopoles to exist.

For finite Higgs self-coupling, the flat space multi-
monopoles have higher mass per unit charge than the
n � 1 monopole, allowing only for a repulsive phase be-
tween like monopoles. By continuity, this repulsive phase
persists in the presence of gravity for small values of a,
but it can give way to an attractive phase for larger values
of a. Thus the repulsion between like monopoles can be
overcome for small Higgs self-coupling by sufficiently
strong gravitational attraction. At the equilibrium value
aeq, multimonopole mass per unit charge and monopole
mass equal one another. We show the equilibrium value
aeq in Fig. 4. aeq increases with increasing Higgs
self-coupling, yielding a decreasing region in parameter
space for the attractive phase. Finally, for large Higgs
self-coupling, only a repulsive phase is left.

While singly charged monopole solutions are stable,
stability of the static axially symmetric multimonopole
solutions is not obvious. We conjecture that the n � 2
multimonopole solutions are stable, as long as their mass
per unit charge is lower than the mass of the n � 1
monopole. For topological number n $ 3, however,
solutions with only discrete symmetry exist in flat space

FIG. 2. Same as Fig. 1 for the Higgs field function f1.
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[5], which, by continuity, should also be present in curved
space (at least for small gravitational strength). For a
given topological number n . 2, such multimonopole
solutions without rotational symmetry may possess a
lower mass than the corresponding axially symmetric
solutions. The axially symmetric solutions may therefore
not represent global minima in their respective topological
sectors, even if their mass per unit charge is lower than
the mass of the n � 1 monopole.

Black holes.—Besides embedded Abelian black hole so-
lutions, like, e.g., the magnetically charged RN solutions
encountered above, SU(2) EYMH theory also possesses
genuine non-Abelian black hole solutions [14]. The SU(2)
EYMH black hole solutions then are no longer uniquely de-
termined by their mass and charge (for vanishing angular
momentum). The non-Abelian black hole solutions, con-
sidered as black holes within (multi)monopoles, therefore
represent counterexamples to the “no-hair” theorem [14].

While static spherically symmetric (n � 1) EYMH
black holes were studied in much detail [14], non-Abelian
black hole solutions with magnetic charge n . 1 were
previously obtained only perturbatively [23]. Replacing
the boundary conditions at the origin (7) by the appro-
priate set of boundary conditions at some horizon radius
xh [19,21], we obtain static axially symmetric black hole
solutions with magnetic charge n . 1 numerically [21].
These black hole solutions are asymptotically flat, as re-
quired by the boundary conditions at infinity (6), and they
possess a regular deformed horizon [19,21]. Being static
and not spherically symmetric, these black hole solutions
represent new counterexamples to Israel’s theorem. While
previous (nonperturbative) counterexamples [19,24] to
Israel’s theorem are not classically stable, black holes
within multimonopoles should provide classically stable
counterexamples [23].

Finally we note that the gravitational properties of mono-
pole spacetimes near the black hole threshold lend them-
selves to obtain new insight into the laws of black hole

FIG. 3. The mass per unit charge in units of 4ph�e is shown
as a function of a for the n � 2 and 3 multimonopoles in the
BPS limit. For comparison the mass of the monopole and the
mass of the extremal RN solutions are also shown.
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FIG. 4. The equilibrium value of a, aeq, where the multi-
monopole mass per unit charge and monopole mass equal one
another, is shown as a function of b for the n � 2 multi-
monopoles. Also shown are the maximal values amax for the
n � 1 and 2 (multi)monopoles.

thermodynamics [25]. Also, insight concerning the cosmic
censorship hypothesis might be obtained from the static
black hole solutions without spherical symmetry [26].
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