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Sound Emission due to Superfluid Vortex Reconnections
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By performing numerical simulations based on the Gross-Pitaevskii equation, we make direct quan-
titative measurements of the sound energy released due to superfluid vortex reconnections. We show
that the energy radiated expressed in terms of the loss of vortex line length is a simple function of the
reconnection angle. In addition, we study the temporal and spatial distribution of the radiation and show
that energy is emitted in the form of a sound pulse with a wavelength of a few healing lengths.
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The decay of superfluid turbulence in the limit of low
temperature raises some fundamental questions in the field
of quantum fluids. For example, vortex tangles produced
in superfluid helium at T , 100 mK are observed to de-
cay [1], but at these temperatures the frictional dissipation
due to thermal excitations is practically negligible. Re-
cent theoretical work [2–4] has highlighted the possible
role of sound emission as a dissipation mechanism. Sound
emission may occur due to vortex motion or reconnec-
tion; however, conventional numerical simulations based
on vortex filaments governed by incompressible Euler dy-
namics (the Biot-Savart law) are unable to describe this
process. A useful tool to study vortex-sound interactions
is the Gross-Pitaevskii (GP) equation. Although unable to
fully represent the physics of HeII, the GP equation does
provide a sophisticated fluid dynamical model capable of
describing vortex nucleation [5] and reconnections [6–8].
Furthermore, the GP equation has been shown to provide
an accurate description of the recently discovered atomic
Bose-Einstein condensates [9], where similar issues of
vortex-sound interactions are likely to occur, particularly
in experiments where many vortices are formed [10,11].

In this Letter, we compute the sound energy radiated
due to superfluid vortex reconnections using the GP model.
We parametrize the energy in terms of vortex line length,
and show that the vortex line length destroyed during a re-
connection is a simple function of the reconnection angle.
In addition, we measure the temporal and spatial distribu-
tions of the radiation and show that energy is emitted in the
form of a rarefaction pulse which subsequently disperses
into sound waves.

To create a reconnection we collide two vortex rings
with radius R whose axes of propagation are offset by a
distance D. This system has the advantage that a well-
behaved initial state can be constructed within a spatially
confined region, and the reconnection occurs “naturally”
due to the self-induced motion of the vortex rings. In addi-
tion, by varying the offset we can study a range of recon-
nection angles, u, where we define u � 2 cos21�D�2R�.
We adopt the same numerical methods as in our previous
papers [12–14]. The key points are that throughout the
0 0031-9007�01�86(8)�1410(4)$15.00
paper we use dimensionless units, where distance and
velocity are measured in terms of the healing length j

and the sound speed c, respectively. In addition, the
asymptotic number density n0 is rescaled to unity. The
initial state is taken as the product of two vortex ring
states, c�r, 0� � f1�r 2 r1�f�

2�r 2 r2�, where f1,2�r�
are time-independent vortex ring solutions of the uniform
flow equation found by Newton’s method [13]. We ar-
range for the rings to propagate in the 6x directions with
an offset in the y direction, i.e., r1,2 � �625y, 6D�2, 0�,
where x, y, and z correspond to the axes shown in Fig. 1,
y is the ring velocity, and D is the offset between the
propagation axes of the two rings. The initial state is
evolved according to the dimensionless GP equation,

i≠tc � 2
1
2

=2c 1 �jcj2 2 1�c , (1)

using a semi-implicit Crank-Nicholson algorithm. To
model a large box, we map an infinite length onto the
space 21 # x0 # 1 using x0 � x��jxj 1 z � with z � 12.
We use a grid spacing, Dx0 � 0.014, and a time step,
Dt � 0.01. Simulations have been performed with vortex
ring radii of R � 5.04, 6.00, and 7.30, which correspond
to velocties y � 0.34, 0.3, and 0.26, respectively. The
range of R is limited by numerics; smaller rings are too
fast to resolve the sound pulse, and larger rings require
more grid points.

A typical sequence illustrating the vortex ring collision
is shown in Fig. 1. As the rings approach they stretch in
the yz plane. The reconnections occur along the z axis
at about t � 30. The reconnections produce two highly
elongated rings and two sound pulses which propagate out-
wards along the 6z axis. The sound pulse appears in Fig. 1
as an oval in the centre of the top view at t � 40. The
stretched rings �t � 50� rapidly shrink into two smaller vi-
brating rings which move outwards. For the offset D � 4
shown in Fig. 1, the outgoing rings propagate at an angle
f � 656± to the x axis. The smaller radius of the outgo-
ing rings reflects the energy loss due to the reconnections.
For larger offsets, the collision is less violent than the
© 2001 The American Physical Society
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FIG. 1. Sequence of density isosurfaces �jcj2 � 0.75� illus-
trating a vortex ring collision with ring radius R � 6 and offset
D � 4. A side view (a) and a top view (b) are shown. Initially,
the rings propagate along the x axis and collide in the yz plane at
t � 30. The collision produces highly stretched rings �t � 50�
which snap back into two smaller rings moving at 656± to the
x axis. The sound pulse is emitted along the 6z axis, and ap-
pears as an oval in the centre of the top view at t � 40.

example shown, and the scattering angle of the outgoing
rings f is smaller.

To quantify the sound energy we calculate the energy
within a measurement sphere of radius 20. The energy
is defined relative to a uniform laminar state as in our
previous work [13]. The energy per ring as a function
of time for collisions between rings with radii R � 6.0,
offset by D � 2 to D � 8.5, is shown in Fig. 2 (inset).
If the reconnection occurs a few healing lengths along the
z axis at t � 30, and the sound pulse travels outwards at
speed c � 1, then one would expect to observe the sound
leaving the measurement volume between t � 45 and t �
50. This appears as an energy drop in the numerical data
[Fig. 2 (inset)]. After the sound pulse has left the sphere
one expects the energy to remain approximately constant
until the outgoing vortex rings leave between t � 60 and
t � 75. This energy “plateau” is well defined in Fig. 2
(inset) for offsets between D � 4 and D � 8.5, but for
smaller offsets the outgoing rings are too fast to be resolved
from the sound pulse. We define the radiated sound energy
as the difference between the initial energy and the value
at the center of the plateau. Note that for D � R�2 �u �
p�2� a second plateau is observed. This corresponds to
sound energy emitted inwards which has farther to travel
and therefore leaves the measurement volume later.

In general, the energy loss will depend on the particular
configuration of vortex lines. For this reason, a better
approach may be to determine the change in the vortex
line length. To convert between energy and length, we
define the energy of a vortex ring with radius R as [15]

E � 2p2R

∑
ln

µ
8R
a

∂
2 1.615

∏
, (2)

with a � 1�
p

2. This is an approximation as the outgo-
ing vortex rings are excited. The vortex line length de-
stroyed, lloss, as a function of reconnection angle, u �
2 cos21�D�2R�, is plotted in Fig. 2. For intermediate an-
gles, the data lie on a unique curve independent of R,
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FIG. 2. Vortex line length destroyed, lloss (in units of the heal-
ing length), as a function of the reconnection angle u. The
line shows lloss � tan2�u�2�. The numerical data are for ring
radii of R � 5.04 �±�, 6.00 ���, and 7.30 �3�, and offsets D
from 2R to 0, corresponding to u from 0 to p. The vortex line
length destroyed is determined from the energy decrease within
a measurement sphere when the sound pulse exits. The time de-
pendence of the energy per ring within the measurement sphere
for ring radius R � 6.0 and offsets D � 2 8.5 in increments
of 0.5 is shown in the inset. The sound energy exits between
t � 48 and t � 52. The energy plateau at t � 60 indicates the
energy loss due to sound emission. This second plateau visible
for D � R corresponds to the sound energy emitted inwards.

which justifies the choice of vortex line length for the
analysis. A reasonable fit is given by, lloss � tan2�u�2� �
�4R2 2 D2��D2, where lloss is measured in units of the
healing length. A u dependence of this form may arise
because the initial curvature, and hence the acceleration of
the vortex line, is proportional to tan�u�2�. If one models
the sound emission as a frictional drag force [16], then the
energy emitted (or the vortex line lost) is proportional to
the square of the acceleration, i.e., tan2�u�2�. The charac-
teristic length scale for the vortex line loss must be related
to the vortex core size. Our simulations suggest that this
length is of the order of the healing length j.

Numerical errors are expected at small and large u:
First, for large u (small offset D), most of the energy is
emitted as sound, and the energy plateau is not well de-
fined leading to a large error. Second, an error occurs when
comparing Eq. (2) with our numerical energy data due to
the finite size of the measurement volume. This error is
largest when the incoming and outgoing rings are largest,
i.e., for large R and large D. This leads to the overestimate
of vortex line loss apparent for the R � 7.30, u , p�2
data in Fig. 2.

The dependence of the vortex line loss on reconnection
angle can, in principle, be applied to determine the sound
energy emitted in other reconnection geometries. In the
case of straight line vortices, it is known that the lines
1411
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tend to become more antiparallel as they approach [17,18].
This effect appears as a stretching of the vortex rings in
our simulation (see Fig. 1), and may partly account for the
rapid increase in the energy loss for u . p�2. To include
this effect in a model of superfluid turbulence, u should be
taken as the initial angle between the vortex lines before it
is altered by their proximity.

To convert the dimensionless units into values applica-
ble to HeII, we take the number density as n0 � 2.18 3

1028 m23, the quantum of circulation as k � h�m �
9.98 3 1028 m2 s21, and the healing length as j�

p
2 �

0.128 nm [19]. The unit of energy is then
h̄n0cj2 � 6.56 3 10224 J or 0.475 K. For these parame-
ters, the energy radiated for reconnection angles of p�2
and 3p�4 are 9.2 3 10223 J (6.65 K) and 5.2 3 10222 J
(37.5 K), respectively.

To determine the character of the sound radiation we
have studied the temporal and spatial distribution of the
emission. The density along the z axis for a collision
with ring radius R � 6 and offset D � 8 is shown in
Fig. 3. Initially the density is uniform, except for a slight
increase near the origin indicating the approaching rings.
Between t � 25 and t � 30 the rings collide in the xy
plane. During the collision, the vortex cores merge while
the rings grow outwards. Because of this stretching ef-
fect, the reconnection point is pushed outwards along the
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FIG. 3. The density along the z axis for a collision between
two vortex rings with radius R � 6 and offset D � 8. The
eleven curves, corresponding to times t � 0 to t � 50 in incre-
ments of 5, are offset in increments of 0.25 along the y axis.
Initially the density is uniform except for a slight increase near
the origin indicating the approaching rings. Between t � 25
and t � 30 the rings collide in the xy plane. This results in the
formation of a rarefaction pulse which moves outwards. Note
that initially the density at the center of the rarefaction pulse is
zero and then increases. For t . 40 the pulse evolves into a
sound wave with a wavelength of 6–8 healing lengths.
1412
z axis to z � 67 and delayed until t � 29 (if there were
no distortion of the incoming rings, one would expect the
reconnection to occur at z � 64.5 and t � 25). When
the circulation is cancelled at t � 29, the density is zero
at z � 67. This density minimum continues to move out-
wards in the same direction as the vortex cores prior to the
reconnection. As the pulse moves outwards the density
mimimum gradually fills in.

As shown for the case of vortex nucleation by a
moving sphere [14], further insight can be gained by
considering the time evolution as a transition between
time-independent states. For the head-on collision �D �
0�, one can regard the segments of the ring as antiparallel
vortex lines. The two-dimensional time-independent
solutions for two opposite sign vortices have been studied
by Jones and Roberts [20]. They show that when the
vortex cores merge they form a rarefaction pulse. In
a three-dimensional situation, as the rarefaction pulse
expands outwards, the energy per unit length decreases
which corresponds to a lower energy on the dispersion
curve. The lower energy rarefaction pulse has a higher
central density and moves faster, eventually approaching
the sound speed [20]. This exactly describes the behavior
apparent in Fig. 3. Eventually the rarefaction pulse
evolves into a sound wave with a central wavelength
of approximately seven healing lengths. For HeII, tak-
ing j�

p
2 � 0.128 nm [19], this converts to 1.3 nm,

FIG. 4. Density cross-sections in the x � 0 plane at t � 54
for ring radii R � 6 with offset D � 8 (same parameters as
in Fig. 3). The sound pulse appears as two arcs with radius
of curvature, 25, suggesting that the reconnections occurred at
z � 67 and t � 29, consistent with Fig. 3. The angular spread
is approximately equal to the reconnection angle (u � 96± for
this example). The white lines indicate the positions of the re-
connections, z � 67, the reconnection angle u and the expected
position of the sound pulse. Grey scale: black 0.95; white 1.025.
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which corresponds to an intermediate phonon wavelength
(cf. maxon and roton wavelengths of 0.6 and 0.3 nm,
respectively).

The spatial extent of the sound pulse in the x � 0 plane,
for the same parameters as in Fig. 3 but at a later time,
t � 54, is shown in Fig. 4. The vortex rings have moved
out of the yz plane by t � 54, as in the example shown in
Fig. 1. The main component of the sound pulse appears
as two crescent-shaped density waves traveling outwards
with an angular distribution roughly equal to the recon-
nection angle (indicated by the white lines in Fig. 4). The
weaker density wave emitted inwards accounts for the sec-
ond plateau in the energy curves shown in Fig. 2 (inset).
A similar distribution is observed in the y � 0 plane. By
t � 54, the sound energy is spread over a large area and
the amplitude of the density variation is very small (only a
few percent). The spherical wave fronts are consistent with
the reconnection position and time indicated by Fig. 3.

In summary, we have made direct quantitative measure-
ments of the sound energy emitted due to superfluid vor-
tex reconnections. We show that the energy radiated leads
to a loss of vortex line length which is a simple function
of the reconnection angle. The energy radiated increases
dramatically as the lines become more antiparallel which
suggests that reconnections may be a significant decay
mechanism for superfluid turbulence in the limit of low
temperature. We also show that the radiation initially ap-
pears in the form of a rarefaction pulse which evolves into
a sound wave with a wavelength of a few healing lengths.
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