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I derive a tight bound between the quality of estimating the state of a single copy of a d-level system,
and the degree the initial state has to be altered in the course of this procedure. This result provides a
complete analytical description of the quantum mechanical trade-off between the information gain and
the quantum state disturbance expressed in terms of mean fidelities. I also discuss consequences of this
bound for quantum teleportation using nonmaximally entangled states.
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As a general rule, the more information is obtained from
an operation on a quantum system, the more its state has to
be altered. This heuristic statement was first exemplified
by the Heisenberg microscope gedankenexperiment [1],
where the spatial resolution of the apparatus was shown
to scale inversely with the uncertainty of the momentum
transferred during the observation. Presently, the distur-
bance caused by the information gain has become an is-
sue of practical significance, as it underlies the security of
quantum key distribution [2].

The balance between the information gain and the state
disturbance attracts currently a lot of interest, particularly
in the context of quantum cryptography [3]. Information
theory provides a selection of concepts to quantify both
the information gain and the state disturbance. The choice
of measures for these two effects is usually dictated by the
relevance to a specific application. In most cases, however,
derivation of the actual balance represents a highly nontriv-
ial task, especially if one is tempted to resign from numeri-
cal means. The purpose of this Letter is to present a
formulation of the information gain versus state dis-
turbance trade-off which is completely solvable using
elementary analytical techniques. This formulation is
motivated by recent works on quantum state estimation
[4], where the information obtained from the operation
is converted into an estimate for the initial state of the
system.

The problem considered in this Letter can be formulated
as follows. Suppose we are given a single d-level particle
in a completely unknown pure state jc�. We want to make
a guess about the quantum state of this particle, but at the
same time we would like to alter the state as little as pos-
sible. One can associate two fidelities with such a proce-
dure. The first one, which we will denote by F, describes
how much the state after the operation resembles the origi-
nal one. The second fidelity, denoted by G, characterizes
the average quality of our guess. It is natural to expect
a trade-off between these two quantities: the more infor-
mation is extracted from the system, i.e., the larger G, the
less the final state should resemble the initial one, hence
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the smaller F should be. What is the actual quantitative
bound between F and G?

Two extreme cases are well known: if nothing is done
to the particle we have F � 1, but then our guess about
the state of the particle has to be random, which yields
G � 1�d. On the other hand, the optimal estimation strat-
egy for a single copy [5] yields G � 2��d 1 1�, but then
the particle after the operation cannot provide any more
information on the initial state; thus also F � 2��d 1 1�.
I prove here that quantum mechanics imposes a general
constraint between F and G in the form of the following
inequality:s
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I also show that this inequality cannot be further improved;
i.e., there exist quantum operations saturating the equality
sign.

The most general strategy that can be applied to the par-
ticle has the form of a trace-preserving operation described
by a set of operators Âr , where r � 1, . . . , N . These op-
erators satisfy the completeness relation

NX
r�1

Ây
r Âr � '̂ . (2)

The classical information gained from this operation is
given by the index r , which is subsequently used to es-
timate the initial state of the particle. The outcome r of
the operation performed on a state jc� is obtained with the
probability �cjÂy

r Âr jc�. This corresponds to the follow-
ing conditional transformation of the quantum state [6]:

jc� !
Âr jc�q

�cjÂ
y
r Âr jc�

. (3)

We shall measure the resemblance of the transformed state
to the original one using the squared modulus of the scalar
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product, equal to j�cjÂr jc�j2��cjÂy
r Âr jc�. Summation

of this expression over r with the weights �cjÂy
r Âr jc�,

and integration over all possible input states jc�, yields
the complete expression for the mean operation fidelity F:

F �
Z

dc

NX
r�1

j�cjÂr jc�j2. (4)

Here the integral
R

dc over the space of pure states is per-
formed using the canonical measure invariant with respect
to the group of unitary transformations on the state vectors
of the particle.

Given the outcome r of the operation, we can make a
guess jcr � what the state originally was. The quality of
this guess, assuming that the initial state was jc�, can be
quantified with the help of the overlap j�cr jc�j2. The
mean estimation fidelity G is given by the average of this
expression over all outcomes r with the probability distri-
bution �cjÂy

r Âr jc�, and by integration over states jc�:

G �
Z

dc

NX
r�1

�cjÂy
r Âr jc� j�cr jc�j2. (5)

We will start derivation of the trade-off between the fi-
delities F and G by evaluating the integrals over jc�. For
this purpose, let us introduce in Eq. (4) two decomposi-
tions of unity in a certain orthonormal basis ji�:

F �
NX

r�1

d21X
i,j�0

Z
dc�c j i� �ijÂy

r jc� �cjÂr j j� � j jc�

�
NX

r�1

d21X
i,j�0

�ijÂy
r M̂ijÂr j j� , (6)

where by M̂ij we have denoted the following integrals of
projectors on the states jc� �cj:

M̂ij �
Z

dc�c j i� � j jc� jc� �cj

�
1

d�d 1 1�
�dij'̂ 1 ji� � jj� . (7)

The second explicit form of the operators M̂ij has been
derived in Ref. [7]. This formula allows us to simplify the
expression for the mean operation fidelity F to the form
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Let us now consider the estimation fidelity G. The guess
jcr � can be represented as a result of a certain unitary
transformation Ûr acting on a reference state, which we
will take for concreteness to be j0�,

jcr � � Ûr j0� . (9)
Using this representation, and changing the integration
measure in Eq. (5) according to jc� ! Ûr jc�, we can
evaluate the integral over jc�,
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Z
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r Ây
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�
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r ÂrÛrM̂00� . (10)

Inserting the explicit form of the operator M̂00 � �'̂ 1

j0��0j���d�d 1 1�� yields
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r Âr jcr�

!
. (11)

This expression provides directly a recipe for optimal as-
signment of guesses jcr � to outcomes of the operation:
each of the components �cr jÂy

r Âr jcr � in the sum over r is
maximized if jcr � is the eigenvector of Ây

r Âr correspond-
ing to its maximum eigenvalue. Consequently, the maxi-
mum value of the mean estimation fidelity G for a given
operation �Âr	 can be written as

G �
1

d�d 1 1�

√
d 1

NX
r�1

kÂrk
2

!
, (12)

where the operator norm is defined in the standard way,

kÂrk � sup
�w jw��1

q
�wjÂ

y
r Âr jw� . (13)

In order to relate the fidelities F and G to each other,
let us consider the singular-value decomposition [8] of the
operators Âr ,

Âr � V̂rD̂rŴr , (14)

where V̂r and Ŵr are unitary, and D̂r is a semipositive
definite diagonal matrix,

D̂r �
d21X
i�0

lr
i ji� �ij , (15)

with the diagonal elements put in a decreasing order:
l

r
0 $ · · · $ l

r
d21 $ 0. We will first show that only the

diagonal matrices D̂r are relevant to the trade-off. Indeed,
the modulus of the trace of the matrix Âr appearing in
Eq. (8) is bounded by

jTrÂr j �

É
d21X
i�0

�ijŴrV̂rD̂r ji�

É

#

d21X
i�0

lr
i j�ijŴrV̂r ji�j #

d21X
i�0

lr
i , (16)

and moreover any quantum operation can easily be
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modified in such a way that the equality sign is reached.
What needs to be done is to follow the operation �Âr 	 with
an extra unitary transformation Ŵy

r V̂y
r depending on the

outcome r . Let us note that this corresponds to the modi-
fication of the operation according to Âr ! Ŵy

r V̂y
r Âr ,

which makes each element of the operation a semipositive
Hermitian operator. As we are interested in the maximum
value of F, we can further assume with no loss of gener-
ality that

F �
1

d�d 1 1�

"
d 1

NX
r�1

√
d21X
i�0

lr
i

!2#
. (17)

The expression for the estimation fidelity written in terms
of l

r
i takes the form

G �
1

d�d 1 1�

√
d 1

NX
r�1

�lr
0�2

!
. (18)

In addition, the trace of the completeness condition given
in Eq. (2) yields the following constraint on l

r
i :

NX
r�1

d21X
i�0

�lr
i �2 � d . (19)

To complete the proof of the inequality (1), it is convenient
to introduce vector notation. Let us define d real vectors
vi � �l1

i , . . . , lN
i �, where the index i runs from 0 to d 2 1.

Sums over r appearing in Eqs. (17) and (18) can be writ-
ten as

f �
NX

r�1

√
d21X
i�0

lr
i

!2

�
d21X
i,j�0

vi ? vj , (20)

g �
NX

r�1

�lr
0�2 � jv0j

2, (21)

where the dot denotes the scalar product, and j ? j is the
standard quadratic norm. The completeness condition (19)
for the operation �Âr 	 written in the vector notation takes
the form

d21X
i�0

jvij
2 � d . (22)

Let us now suppose that the vector v0 is fixed. The estima-
tion fidelity is then given by G � �d 1 jv0j

2���d�d 1 1��.
What is the maximum operation fidelity F that can be
achieved with this constraint? The answer to this question
is provided by an application of the Schwarz inequality to
Eq. (20):

f #

d21X
i,j�0

jvij jvjj �

√
d21X
i�0

jvij

!2

�

√
p

g 1

d21X
i�1

jvij

!2

.

(23)

We have excluded here from the sum over i the norm of
the vector v0 which is fixed and equal to

p
g. The sum

of the norms of the remaining vectors can be estimated
using the inequality between the arithmetic and quadratic
means,
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s
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, (24)

where we have evaluated the sum
Pd21

i�1 jvi j
2 using

Eq. (22). Inserting this bound into Eq. (23) we finally
obtain the inequality

f # �
p

g 1

q
�d 2 1� �d 2 g� �2, (25)

which expressed in terms of the fidelities F and G takes
the form of Eq. (1).

The necessary and sufficient conditions for a quantum
operation to reach the equality sign can most easily be
formulated in the vector notation. The Schwarz inequality
(23) becomes equality if all the vectors v0, . . . , vd21 are
collinear. Furthermore, the equality sign in Eq. (24) holds
if and only if jv1j � · · · � jvd21j. It is straightforward to
see that an exemplary operation satisfying these conditions
for a given estimation fidelity G � �1 1 g�d���d 1 1� is
defined by

Âr �

r
g
d

jr 2 1� �r 2 1j

1

s
d 2 g

d�d 2 1�
�'̂ 2 jr 2 1� �r 2 1j� , (26)

where the index r runs from 1 to d, and the projectors jr 2

1� �r 2 1j are constructed using any orthonormal basis.
This confirms the inequality (1) is indeed a tight one and
cannot be further improved.

A simple transformation of Eq. (1) shows that the quan-
tum mechanically allowed region for the fidelities F and
G is bounded by a quadratic curve, which turns out to be
a fragment of an ellipse given by the equation

�F 2 F0�2 1 d2�G 2 G0�2 1

2�d 2 2� �F2F0� �G 2 G0� �
d 2 1

�d 1 1�2 (27)

with F0 � �d 1 2���2d 1 2� and G0 � 3��2d 1 2�.
The shape of the region for several values of d is depicted
in Fig. 1.

The balance between the operation and estimation fi-
delities derived in this Letter has interesting consequences
in quantum teleportation based on nonmaximally entan-
gled states. If two parties share a pure bipartite state
of the Schmidt form jtele� �

Pd21
k�0 mkjk� ≠ jk�, then the

maximum teleportation fidelity attainable using this state
is given by [7,9]

Ftele �
1 1 �

Pd21
k�0 mk�2

d 1 1
. (28)

Furthermore, for a nonmaximally entangled state the
measurement performed during the teleportation protocol
reveals some information on the teleported state. This
information can be converted into an estimate for the
initial state, whose maximum average fidelity has been
shown to equal [7]
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FIG. 1. Rescaled bound for the operation fidelity F versus
the estimation fidelity G, plotted for d � 2 (solid line), d � 4
(dashed line), and d � 8 (dotted line).

Gtele �
1 1 m

2
0

d 1 1
, (29)

where m0 denotes the largest Schmidt coefficient for the
state jtele�. As the procedure of teleportation can be
viewed as a special case of a quantum operation [10], the
bound (1) applies as well to the pair of fidelities Ftele and
Gtele. Consequently, for a given teleportation fidelity Ftele,
the maximum value of the estimation fidelity is achieved
for the state jtele� satisfying the condition m1 � · · · �

md21 �
q

�1 2 m
2
0���d 2 1�. This condition defines a

class of pure bipartite states which are optimal from the
point of view of the trade-off between the teleportation fi-
delity and the estimation fidelity.

In conclusion, I have obtained a tight bound for the
fidelities describing the quality of estimating the state of a
single copy of a d-level particle, and the degree the initial
state has to be changed during this operation. This result
seems to be one of very few cases, when the trade-off
between the information gain and the state disturbance can
be derived in a closed analytical form.
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