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Experimental Realization of a 2D Fractional Quantum Spin Liquid
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The ground-state ordering and dynamics of the two-dimensional S � 1�2 frustrated Heisenberg anti-
ferromagnet Cs2CuCl4 are explored using neutron scattering in high magnetic fields. We find that the
dynamic correlations show a highly dispersive continuum of excited states, characteristic of the resonat-
ing valence bond state, arising from pairs of S � 1�2 spinons. Quantum renormalization factors for the
excitation energies (1.65) and incommensuration (0.56) are large.
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The concept of fractional quantum states is central to
the modern theory of strongly correlated systems. In mag-
netism, the most famous example is the spin S � 1�2
1D Heisenberg antiferromagnetic chain (HAFC), where
pairs of S � 1�2 spinons are deconfined from locally al-
lowed S � 1 states; a phenomenon that is now well estab-
lished both theoretically [1] and experimentally [2]. These
spinons are topological excitations identified with quan-
tum domain walls. Experimentally, such fractionalization
is manifest as a highly dispersive continuum in the dy-
namical magnetic susceptibility measured by, e.g., neutron
scattering [2], and for the HAFC identified as the creation
of pairs of spinons.

In 1973, Anderson [3] suggested that a 2D fractional
quantum spin liquid may take the form of a “resonating
valence bond” (RVB) state comprising singlet spin pair-
ings in the ground state, and with pairs of excited S � 1�2
spinons separating via rearrangement of those bonds. The
dominant feature of the RVB state, present in all its theo-
retical descriptions [4–6], is an extended, highly disper-
sive, continuum. To date this feature remains unobserved
in any 2D magnet; in the case of the S � 1�2 Heisenberg
square lattice (HSL) mean-field confining effects lead to
S � 1 magnons and a renormalized classical picture of
fluctuations around local Néel order emerges [7,8]. One
may think, however, that because frustrating interactions
can counteract the staggered fields responsible for confine-
ment [8,9] they may provide a route to generating frac-
tional phases in 2D.

We explore such a scenario by making neutron scatter-
ing studies on Cs2CuCl4. By exploiting its unique experi-
mental properties as a low-exchange quantum magnet [10],
we reveal an unexpectedly strong two dimensionality in the
form of a triangular antiferromagnet with partially released
frustration. The simplicity of the couplings in Cs2CuCl4
makes it a model system to investigate generic features of
2D frustrated quantum antiferromagnets.
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The structure of Cs2CuCl4 is orthorhombic (Pnma) with
lattice parameters a � 9.65 Å, b � 7.48 Å, and c �
12.35 Å at 0.3 K. Magnetic interactions are mostly
restricted between Cu21 S � 1�2 spin sites in the �b, c�
plane [see Fig. 1(a)] with coupling J along b (“chains”)
and zigzag “interchain” coupling J 0 along the c axis
[11]. A small interlayer coupling J 00 , 1022J (along
a) stabilizes 3D order below TN � 0.62 K into an
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FIG. 1. (a) 2D couplings in Cs2CuCl4: Strong bonds J (thick
lines) and smaller frustrating zigzag bonds J 0 (thin lines).
(b),(c) Magnetic phase diagram in a field along the c and a
axes, respectively. Symbols show the boundaries of the various
phases described in the text, measured using neutron scattering
(squares) [11,13] and susceptibility (circles) [13]. Solid curves
are a guide to the eye, and the dashed line indicates crossover
to paramagnetic behavior. (d) Spin rotation in the �b, c� plane.
Thick arrows are spin vectors, and the circle indicates the spin
rotation upon translation along the b axis. (e) Incommensura-
tion e vs field along c [13]. (f) e vs field along a (solid line is
a guide to the eye, and the solid circle is from [13]).
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incommensurate structure along b due to the frustrated
couplings; weak anisotropies confine the ordered mo-
ments to rotate in cycloids near coincident with the �b, c�
plane [see Fig. 1(d)] but with a small tilt of the cycloidal
plane relative to the �b, c� plane whose sense alternates
along c such that for each plaquette (isosceles triangle)
�S1 ? �S2 3 S3�� is small but nonzero (order is noncopla-
nar) [11], making this system a candidate for a chiral
spin state [12]. The minimal Hamiltonian determining the
magnetic order is

H �
X
�i,i0�

JSi ? Si0 1 J 0
X
�i,j�

Si ? Sj (1)

with each interacting spin pair counted once [see
Fig. 1(a)]; a detailed description of the full Hamiltonian
including small Dzyaloshinskii-Moriya terms is given
elsewhere [13]. The Hamiltonian interpolates between
noninteracting HAFCs �J 0 � 0�, the fully frustrated
triangular lattice �J 0 � J�, and unfrustrated HSL �J � 0�.

Quantifying the couplings in (1) is of considerable
importance both to guide theory and put our results
in context. We do this using the following approach:
neutron diffraction measurements were made on a
single crystal of Cs2CuCl4 in magnetic fields up to 7 T
and temperatures down to 0.2 K using the PRISMA
time-of-flight (TOF) spectrometer at the ISIS spallation
neutron source. For fields along a (near perpendicular
to the planes of spin rotation) a 3D incommensurate
“cone” order is stable up to full ferromagnetic �F�
alignment (Bc � 8.44 T at T � 0.03 K) [see Fig. 1(c)].
At T � 0.2 K magnetic Bragg peaks arising from the
transverse spin rotation move from e0 � 0.030�2� in
zero field to e � 0.047�2� at 7 T, where e is the in-
commensuration relative to Néel order [see Fig. 1(f)].
Mean-field theory predicts no change with field, and
the large renormalization observed is a purely quantum
effect. Since the ferromagnetic �F� state is an eigenstate
of (1) with no fluctuations, e at the saturation field Bc is
at its classical value [14] sinpec � J 0�2J. Higher-field
measurements [13] observe ec � 0.053�1�, implying an
exchange coupling ratio of J 0�J � 0.33�1�. The resulting
quantum renormalization of the zero-field incommen-
suration e0�ec � 0.56�2� is similar to the predicted
value of 0.43(1) �J 0�J � 0.33�1�� estimated by series
expansions using a paired singlet basis [14]. Additionally,
the determined exchange coupling ratio is in agreement
with the observed 2D dispersion in the saturated phase at
12 T k a [13], which give the bare exchange couplings-
per-site J � 0.375�5� meV within chains and 2J 0 �
0.25�1� meV between chains. This demonstrates that
interchain couplings are of the same order as “intra-
chain” and Cs2CuCl4 is therefore a quasi-2D system.
These observations require a change in the point of view
taken by earlier studies [10], which proposed a quasi-1D
picture based on estimates of the interchain couplings,
not including the large quantum renormalization of the
1336
incommensuration reported here. We now present detailed
measurements of the excited states.

Dynamical correlations in a 2.5 cm3 single crystal of
Cs2CuCl4 were probed using the indirect-geometry TOF
spectrometer IRIS, also at ISIS. The energy resolution
[0.016 meV full width at half maximum (FWHM)] was an
improvement of nearly an order of magnitude compared to
our previous studies [10]. The detectors form a semicir-
cular 51-element array covering a wide range of scattering
angles (25.75± to 158.0±). The sample was mounted with
the �a, b� scattering plane horizontal in a dilution refrigera-
tor insert with base temperature 0.1 K.
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FIG. 2. (a) Dispersion of the magnetic excitations along the
b� axis (T � 0.1 K, zero field). Filled symbols (triangles from
[10]) show the main peak in the measured line shape and the
solid line is a fit to the principal spin-wave mode v�k� of Hamil-
tonian (1) (dashed and dash-dotted lines show the corresponding
dispersion of the other two secondary modes, v1 and v2, re-
spectively, as described in the text). Typical scan trajectories are
shown by the light shaded regions labeled A-D (the line thick-
ness is the wave-vector averaging) and the measured data are
shown in Figs. 3(A)–3(D). The open circles show the experi-
mentally estimated upper boundary of the continuum and the
upper (thick) dashed line is a guide to the eye. The dotted area
indicates the extent of magnetic scattering. (b) Intensity mea-
sured along scan D above, in the cycloidal phase at 0.1 K (open
circles) and in the paramagnetic phase at 15 K (solid circles).
Data points are the raw counts and the dashed line shows the es-
timated nonmagnetic background. The solid lines are guides to
the eye and the horizontal bar indicates the instrumental energy
resolution.
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The results for the b� dispersion are shown in Fig. 2(a).
Although the data points also have a finite wave-vector
component along a�, no measurable dispersion could
be detected along this direction, confirming that the
coupling between layers J 00 is negligible. The ob-
served dispersion is well accounted for by the principal
spin-wave mode [15] of Hamiltonian (1), v�k� �p

�Jk 2 JQ� ��Jk2Q 1 Jk1Q��2 2 JQ� , where the
Fourier transform of exchange couplings is Jk �
J̃ cos2pk 1 2J̃ 0 cospk cospl and k � �h, k, l�. The or-
dering wave vector in the 2D Brillouin zone of the triangu-
lar lattice is Q � �0.5 1 e0�b� and the effective exchange
parameters J̃ � 0.62�1� meV and J̃ 0 � 2J̃ sinpe0 (fixed)
are in agreement with [10]. The quantum renormalization
of the excitation energy J̃�J � 1.65 is very large and is
similar to the exact result p�2 for the 1D S � 1�2 HAFC
(see, e.g., [1]). In contrast, the spin-wave velocity (energy)
renormalization in the unfrustrated S � 1�2 HSL is only
1.18. Such large renormalizations of energy (1.65) and
incommensuration (0.56) show the crucial importance of
quantum fluctuations in the low-field state of Cs2CuCl4.

A remarkable feature of the measured dynamical cor-
relations is that these do not show single particle poles,
but rather extended continua. Figure 2(b) (open circles)
shows a scan at the magnetic zone boundary taken at
0.1 K. The scattering is highly asymmetric with a sig-
nificant high-energy tail. The nonmagnetic background
(dashed line) is modeled by a constant-plus-exponential
function. The magnetic peak disappears at 15 K (solid
circles) and is replaced by a broad, overdamped, paramag-
netic signal. Figures 3(A)–3(D) show 0.1 K data prop-
erly normalized and corrected for absorption, and with the
nonmagnetic background subtracted. To quantify discus-
sion of the dynamical correlations measured by neutron
scattering, we first consider a spin-wave model, which is
known to provide a good description of the unfrustrated
HSL [7].

The dynamical correlations of the spin-wave model
[15] for Hamiltonian (1) exhibit single particle poles from
three spin-1 magnon modes, polarized with respect to the
cycloidal plane. Figure 2(a) shows the main dispersion
mode v�k�, polarized out of plane, and the two secondary
modes, v2�k� � v�k 2 Q� and v1�k� � v�k 1 Q�,
both polarized in plane, where the equilibrium spin direc-
tion rotates in plane with wave vector Q. The expected
scattering is given by the dashed lines in Figs. 3(A)–3(D),
which clearly fails to account for the observed intensity
as well as the extended high-energy tail of the scattering.
This tail is not an instrumental effect as the FWHM
of the energy resolution [horizontal bar in Fig. 2(b)] is
an order of magnitude narrower than the signal width.
Including next-order processes also fails to account for the
scattering: the two-magnon scattering (polarized in-plane)
contribution to the line shape is also shown in Fig. 3(D)
(shaded area)— this was calculated numerically using the
method described in [16] and using the experimentally
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FIG. 3. Magnetic inelastic scattering measured at 0.1 K along
the light shaded regions labeled A-D in Fig. 2(a). Top axis shows
wave-vector change along scan direction. Counting times were
typically 35 hours at an average proton current of 170 mA. Solid
lines are fits to a modified two-spinon cross section (see text).
Vertical arrows indicate estimated upper boundary. Dashed lines
show predicted line shape for polarized cycloidal spin waves and
the dark shaded region (shown only in D for brevity) indicates
the estimated two-magnon scattering continuum. All calcula-
tions include the isotropic magnetic form factor of Cu11 ions
and the convolution with the spectrometer resolution function.

estimated spin reduction DS � 0.13 [11] to normalize the
elastic, one- and two-magnon scattering.

Because in a neutron scattering process the total spin
changes by DStotal � 0, 61, the absence of single particle
poles and the presence of excitation continua imply that the
underlying excitations carry fractional quantum numbers.
For J 0 � 0, these are rigorously known to be S � 1�2
spinons [1], and two-spinon production is the principal
neutron scattering process [2]. Our analysis shows that the
measured scattering can be described by the Müller ansatz
line shape appropriate to the 1D J 0 � 0 limit S�k, v� �
Q�v 2 vl�k��Q�vu�k� 2 v��

q
v2 2 v

2
l �k�, where Q

is the Heaviside step function, and vl and vu are the
lower and upper continuum boundaries, respectively, gen-
eralized to 2D such that (i) the total cross section has
three continua with the lower boundaries v�k�, v2�k�,
and v1�k� shown in Fig. 2(a), (ii) the continua have equal
weights and are isotropic in spin space, and (iii) a modi-
fied upper boundary vu [dashed upper line in Fig. 2(a)]
is used. This model provides an excellent description
of the data [see Figs. 3(A)–3(D)]. It is also noteworthy
that both the asymmetric dispersion, characteristic of 2D
1337
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frustrated couplings, and the excitation continua are essen-
tially unchanged at T � 0.9 K above TN � 0.62 K in the
disordered spin liquid phase showing that ordering affects
only the low-energy behavior. We conclude that, in con-
trast to the HSL (J = 0) where unfrustrated couplings con-
fine spinons into S = 1 magnons throughout the Brillouin
zone, Cs2CuCl4 has fractional spin quasiparticles carry-
ing the same quantum numbers as in the HAFC (J9 = 0),
namely, S = 1�2 spinons, and that, further, these spinons
are modified by the two dimensionality at all energy scales.
Although no evidence of spinon confinement is observed
at any of the energy scales probed in our experiments, low
energy S � 1 Goldstone modes are expected to occur in
the 3D ordered phase; weakly coupled HAFCs have re-
cently been shown to exhibit dimensional crossover in the
dynamical correlations from low-energy 3D spin waves to
high-energy 1D spinon continua on an energy scale of the
interchain coupling [17].

Magnetic fields applied within the ordering plane have
a profoundly different effect from those along a. In fields
along c a transition occurs above 1.4 T �T , 0.3 K� to
a phase, marked S on Fig. 1(b), where (i) the structure
is elliptical with a large elongation along the field direc-
tion, (ii) the incommensuration approaches a linear rela-
tion with field with a large slope [13] [see Fig. 1(e)], and
(iii) the total ordered moment decreases with increasing
field. Above 2.1 T there is no long-range order, at least
down to 35 mK, and the system is in a spin liquid state. In
this phase the dynamical correlations show shifts of con-
tinua and redistribution of scattering weight [10], as ex-
pected for spinon states and compared in [10] with 1D
results [1]. However, 2D correlations are also important
[by continuity they persist to the ferromagnetic F phase at
saturation and to the spin liquid phase above TN (both show
2D character)] and give rise to an asymmetric distribution
of scattering weight at about k � 1.5 [10,13]. Linear field
dependence of the incommensuration of the longitudinal
spin correlations is a signature of exclusion statistics for
the spinon quasiparticles in the HAFC, and the observed
similar behavior of the incommensuration in the S phase
dominated by the ordering of the longitudinal spin com-
ponents suggests that exclusion statistics are important for
the quasiparticles in Cs2CuCl4. The existence of a modu-
lated continuum upper boundary indicating phase space
restrictions for paired states also supports this conclusion.
Susceptibility measurements [13] show no evidence of a
phase transition between the spin liquid behavior in zero
field above TN � 0.62 K and the disordered phase found
for fields greater than 2.1 T down to at least 35 mK. This
indicates that fields applied within the ordering plane sta-
bilize the fractional spin liquid state.

In conclusion we have studied the ground state and
excitations of the frustrated quantum antiferromagnet
Cs2CuCl4. This material has a 2D Hamiltonian interpo-
lating between the square, triangular, and 1D Heisenberg
1338
antiferromagnets, and shows (i) very strong quantum
renormalizations indicating the importance of fluctuations,
(ii) continua in the dynamical correlations demonstrat-
ing fractional excitations, (iii) very large field-driven
incommensuration and disorder effects from in-plane
fields showing that exclusion statistics are important, and
(iv) stabilization of a spin liquid ground state by in-plane
fields. We believe new theoretical work is needed to
explain these findings.

Full details of the analysis and extensive results from
other related experiments on Cs2CuCl4 will be given in a
forthcoming publication [13].
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