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Quasiperiodic Hubbard Chains
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Low-energy properties of half-filled Fibonacci Hubbard models are studied by weak-coupling renor-
malization group and density matrix renormalization group methods. In the case of diagonal modulation,
weak Coulomb repulsion is irrelevant and the system behaves as a free Fibonacci chain, while for strong
Coulomb repulsion the charge sector becomes a Mott insulator and the spin sector behaves as a uniform
Heisenberg antiferromagnetic chain. The off-diagonal modulation always drives the charge sector to a
Mott insulator and the spin sector to a Fibonacci antiferromagnetic Heisenberg chain.
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Since the discovery of high Tc oxide superconductors
and heavy fermion materials, the strongly correlated elec-
tron system has been the most important subject of recent
condensed matter physics. Even in the insulating phase,
the quantum magnetism in these and related materials
has been attracting wide interest from theory and experi-
ment [1]. Another remarkable finding in recent condensed
matter physics is the discovery of quasicrystals [2]. The
electronic states in quasicrystals are not trivial even in
the simplest case of one-dimensional free fermions. For
the Fibonacci lattice, the beautiful multifractal structure
of the single particle spectrum and the wave function
have been revealed by means of the renormalization group
method [3,4].

Nevertheless the interplay between the quasiperiodicity
and strong correlation in quantum magnetism has been
rarely studied except for the recent bosonization [5] and
density matrix renormalization group (DMRG) studies for
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one-dimensional Heisenberg chains [6]. Experimentally,
several kinds of quasicrystals with local magnetic moments
have been synthesized recently [7]. In this respect, the
quantum magnetism in quasiperiodic systems must be a
promising field in the condensed matter physics of the next
decade.

Although one-dimensional quasiperiodic magnetic ma-
terial is not available at present, one of the plausible candi-
dates is an artificial structure such as quantum dot array [8].
In such realistic situations, the itineracy of electrons be-
comes important. For the realization of a one-dimensional
Fibonacci antiferromagnet, it is necessary to specify the
parameter regime in which quasiperiodicity comes into
play. In the present work, we therefore investigate the
Fibonacci Hubbard model in which the coupling between
spin and charge degrees of freedom produces a rich variety
of ground states even in the half-filled case.

Our Hamiltonian is given by
H d �
N21X
i�1

2t�ay
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for diagonal modulation and
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for off-diagonal modulation. The superfices d and o
represent the diagonal and off-diagonal modulations,
respectively. The operators a

y
i,s and ai,s are creation and

annihilation operators of fermions with spin s (� " or #)

and ni,s � a
y
i,sai,s . The open boundary condition is as-

sumed. The on-site Coulomb interaction is denoted by U.
The transfer integral tai ’s (� tA or tB) and the on-site
potential Vai ’s (� VA or VB) follow the Fibonacci
sequence generated by the substitution rule A ! AB,
B ! A. The modulation amplitudes are defined by Dt �
tA 2 tB and DV � VA 2 VB. For the off-diagonal
modulation case, the average transfer integral t is defined
by t � �tAf 1 tB���1 1 f� where f is the golden mean
f � �1 1

p
5��2. In the rest of this paper, we concen-

trate on the half-filled case.
First, we employ the bosonization method in the weak-

coupling limit U, jDtj, jDV j ø t, to obtain the following
bosonized Hamiltonian:

H
d,o

B � H0 1 H
d,o

W , (3)

where
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The boson fields fr and fs represent the charge and spin
degrees of freedom, respectively. The momentum densities
conjugating to them are denoted by Pr and Ps . The
lattice constant and Fermi velocity are denoted by a and
yF . The ultraviolet cutoff denoted by a is of the order of
a. The function W�x� represents the Fibonacci modulation
of amplitude unity.

Following Vidal et al. [5], we obtain the weak-coupling
renormalization group (WCRG) equations for the coupling
constants by the standard technique [9] as
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G�l� �
X

´�61

X
q

y2
qR��q 1 ´p�a�a�l�� , (9)

where yq�0� � alŴ�q��yF with l � DV�2 for the di-
agonal modulation and l � Dt for the off-diagonal
modulation. The Fourier components of W�x� are denoted
by Ŵ�q� whose explicit form is given in [5]. The renor-
malized short distance cutoff is given by a�l� � ael .
In Eq. (9), the summation over q is performed for q �
2pm�n with m [ �1, n 2 1�, where n is the length of the
Fibonacci sequence and R is the Gaussian ultraviolet
1332
regulator R�x� � e2x2
. The 1 �2� sign in Eq. (6) is for

the off-diagonal (diagonal) modulation case. The correc-
tions to the velocities ur and us are neglected since they
give the higher order corrections to the renormalization
of other quantities. A similar set of equations for the
alternating potential is derived by Tsuchiizu and Suzumura
[10]. It should be noted that the scaling dimension of the
quasiperiodic modulation term is nontrivial because of
the presence of the self-similar function W�x�, so that we
have to resort to numerical calculation to solve the WCRG
equations.

We have also carried out the numerical calculation
using the DMRG method [11,12] to obtain insight into
the strong-coupling regime which is inaccessible by the
WCRG calculation. In the numerical calculation, we take
t � 1 to fix the energy unit. To reveal the bulk properties
of the Fibonacci chains, it is useful to investigate the
behavior of the average of physical quantities over all pos-
sible finite length subsequences of infinite Fibonacci chains
as discussed in [6,13]. The number of the n-membered
subsequence is equal to n 1 1 [14]. The number m of the
states kept on each DMRG step ranged from 120 to 300
depending on the values of parameters. The convergence
with respect to m is checked. If weak m dependence re-
mains around m � 300, the m extrapolation is carried out
for each energy eigenvalue E�m� using the extrapolation
formula E�m� � E�`� 1 c�m2 [15].

Numerical solutions of the WCRG equations are classi-
fied into two categories according to the behavior of yr .
In the following, we discuss these two regimes separately.

Strong-coupling regime.— If yr increases in the course
of renormalization, it grows more rapidly than other
parameters, so that the phase fr is fixed to p�2

p
2. The

growth of the Fibonacci modulation term G is suppressed
as expected from 2yr term in the right-hand side of
Eq. (8). In this case, the charge gap opens and the ground
state is a Mott insulator. For diagonal modulation, the
Fibonacci modulation term, which is proportional to
cos

p
2 fr, vanishes. Thus the low-energy behavior of the

spin sector is described as an antiferromagnetic uniform
Heisenberg chain. On the other hand, for off-diagonal
modulation, the Fibonacci modulation term is propor-
tional to sin

p
2 fr which is fixed to 1. Therefore the spin

sector is renormalized to the Fibonacci antiferromagnetic
Heisenberg chain whose behavior is discussed in detail in
[5,6]. It should be noted that Kr is always less than unity
because Kr�0� , 1 and

dKr

dl , 0. For the off-diagonal
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modulation, therefore,
dyr

dl is always positive and the
above behavior is always realized.

Typical cases are numerically demonstrated by the
DMRG method in Fig. 1 with U � 4 for the off-diagonal
modulation with Dt � 0.4 and diagonal modulation with
DV � 2.0. The system size dependence of the average of
the logarithm of the spin gap Ds and charge gap Dc are
shown. It is verified that the charge gap tends to a finite
value as N ! ` for both cases. For the diagonal modula-
tion, the spin gap behaves as �lnDs	 � 2 lnN with slope
unity which is the Luttinger liquid behavior of the uniform
Heisenberg chain. For the off-diagonal modulation, the
size dependence of the spin gap is well fitted by the
formula �lnDs	 
 2Nv as in the Fibonacci Heisenberg
chain [6]. It should be noted that no trace of Fibonacci
modulation remains in the size dependence of the spin
gaps of the diagonal case even though the modulation
amplitude is 5 times larger than the off-diagonal case.

In the limit of strong U ¿ tA, tB, our Hubbard model
can be mapped onto the Heisenberg model as

HH �
N21X
i�1

2Jai SiSi11, �Jai . 0� , (10)

where Si’s are the spin 1�2 operators. In the case of off-
diagonal modulation the exchange couplings Jai ’s (� JA

or JB) follow the Fibonacci sequence as JA � 2t2
A�U and

JB � 2t2
B�U. On the other hand, for the diagonal modu-

lation, the exchange coupling is determined by U and
Va of the sites on both ends of the bond. Therefore the
exchange coupling can be indexed by the pair of letters
which appears in Fibonacci sequence as JAA � 2t2�U and
JAB � JBA � t2��U 1 VA 2 VB� 1 t2��U 1 VB 2 VA�.
The sequence BB does not appear. We call this type
of modulation pairwise Fibonacci modulation. The sys-
tem size dependences of the energy gap calculated by
the DMRG method for both types of antiferromagnetic
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FIG. 1. The N dependence of �lnDs,c	 for the Fibonacci
Hubbard model with U � 4 for diagonal modulation with
DV � 2.0 (squares) and off-diagonal modulation with
Dt � 0.4 (circles). Filled (open) symbols represent the charge
(spin) gap.
Heisenberg chains are shown in Fig. 2 with DJ �
jJA 2 JBj or jJAA 2 JABj. The energy unit is J �
�fJA 1 JB���1 1 f� or �fJAA 1 JAB���1 1 f�. As
expected, the spin excitations scale as �lnDs	 
 2Nv

for the Fibonacci Heisenberg chain and as �lnDs	 � 2 lnN
for the pairwise Fibonacci chain.

Asymptotically free regime.—For the diagonal modu-
lation case, the competition between the quasiperiodic
modulation and the Coulomb interaction can take place for
small U. In this case, yr is renormalized to negative values
and the Fibonacci modulation term G grows under renor-
malization, so that they continue to compete with each
other even for large l. A typical example of the numeri-
cal solution of WCRG equations is shown in Fig. 3(a) for
DV�t � 0.4 and U�2pt � 0.02. Comparing this behav-
ior with that of the free fermions with Fibonacci poten-
tial shown in Fig. 3(b) with DV�t � 0.4, we find both
flows are quite similar. This implies that the main contri-
bution to the renormalized quantities is generated by the
backscattering due to the Fibonacci modulation and the
bare Coulomb interaction does not make an essential con-
tribution. Therefore we conclude that the weak Coulomb
interaction is irrelevant and the low-energy spectrum scales
as �lnDs,c	 � 2z lnN similarly to the free case. The nu-
merical results by DMRG shown in Fig. 4(a) for U � 0.4
and DV � 1.2 also support this conclusion if compared
with the exact diagonalization results for the free case with
DV � 1.2 shown in the same figure. For comparison,
Fig. 4(b) shows the same quantities for the off-diagonal
modulation with U � 0.4 and Dt � 1.2. In contrast to
the diagonal modulation case, there is a clear evidence of
the finite charge gap. The spin gap decreases too rapidly
to estimate the precise value for large systems N . 36. It
is, however, consistent with the Fibonacci Heisenberg-type
behavior �lnDs	 
 2Nv [6] rather than the power law
�lnDs	 � 2z lnN .

Following the argument of [4], the low temperature be-
havior of the thermodynamic quantities is deduced from
the above scaling behavior of the low-energy spectrum.
For the off-diagonal modulation, the magnetic suscep-
tibility x behaves as x 
 1��T �lnT �1�v� and magnetic
specific heat C as C 
 1��lnT �111�v . This also holds for
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FIG. 2. The N dependence of �lnDs	 for the Heisenberg model
with (a) Fibonacci pairwise modulation and (b) Fibonacci modu-
lation with J � 1.0.
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FIG. 3. The l dependence of the renormalized parameters with
DV�t � 0.4 with (a) U�2pt � 0.02 and (b) U � 0. The
ultraviolet cutoff a is taken equal to a.

the Fibonacci Heisenberg chains. For the diagonal modula-
tion with large U, we expect the Luttinger liquid behavior
x 
 const and C 
 T , while for the diagonal modulation
with small U, we expect the free Fibonacci chain behavior
x 
 T1�z21 and C 
 T1�z .

In summary, we find that the Fibonacci repulsive Hub-
bard model at half filling shows a variety of ground states
depending on the types and strength of modulation in con-
trast with the free fermion Fibonacci chain which is criti-
cal irrespective of the type or strength of modulation. For
the off-diagonal modulation, the effect of Coulomb inter-
action is most drastic. The ground state is always a Mott
insulator and the spin sector behaves as an antiferromag-
netic Fibonacci Heisenberg chain. On the contrary, for
the diagonal modulation, both spin and charge sectors be-
have as free Fibonacci chains if the Coulomb interaction
is weak enough. This implies that the conventional free
theories [3] are approximately applicable to the diagonal
modulation case as far as the electron-electron interaction
is weak. This is in contrast to the case of spinless fermion
chains in which nearest neighbor repulsive Coulomb in-
teraction is always relevant [5,6] for both diagonal and
off-diagonal modulations. Even in the diagonal modula-
tion case, the ground state becomes a Mott insulator if the
Coulomb interaction is strong enough. In this case, how-
ever, the effective exchange modulation in the spin sector is
irrelevant and the spin sector behaves as an antiferromag-
netic uniform Heisenberg chain.
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FIG. 4. The N dependence of �lnDs,c	 for the Fibonacci Hub-
bard model with U � 0.4 and U � 0 for (a) diagonal modula-
tion with DV � 1.2 and (b) off-diagonal modulation with Dt �
1.2. Filled (open) symbols represent the charge (spin) gap.
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Our calculation suggests how to realize different types of
Fibonacci electronic systems using quantum dot arrays. To
realize a nearly free Fibonacci chain, the local potential of
dots should be modulated and the charging energy should
be reduced. On the other hand, to realize a Fibonacci
Heisenberg antiferromagnet, it is the transfer integrals (or
distances) between the dots which should be modulated.

The numerical calculations were performed using the
HITAC SR8000 at the Supercomputer Center, Institute for
Solid State Physics, University of Tokyo and the HITAC
S820/80 at the Information Processing Center of Saitama
University. This work was supported by a Grant-in-Aid
for Scientific Research from the Ministry of Education,
Science, Sports and Culture, Japan.

[1] See, for example, Frontiers in Magnetism —Nanoscale,
Glassy and Quantum Magnetism, edited by Y. Miyako,
H. Takayama, and S. Miyashita [J. Phys. Soc. Jpn. 69,
Suppl. A (2000)].

[2] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys.
Rev. Lett. 53, 1951 (1984).

[3] M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev.
Lett. 50, 1870 (1983); M. Kohmoto and Y. Oono, Phys.
Lett. 102A, 145 (1984); M. Kohmoto, B. Sutherland, and
C. Tang, Phys. Rev. B 35, 1020 (1987); H. Hiramoto and
M. Kohmoto, Int. J. Mod. Phys. B 6, 281 (1992), and ref-
erences therein.

[4] J. Hermisson, J. Phys. A 33, 57 (2000).
[5] J. Vidal, D. Mouhanna, and T. Giamarchi, Phys. Rev. Lett.

83, 3908 (1999).
[6] K. Hida, J. Phys. Soc. Jpn. 68, 3177 (1999); 69, 311 (2000);

Proceedings of Aperiodic 2000, Nijmegen, Netherlands,
2000 [Ferroelectrics (to be published)].

[7] T. J. Sato, H. Takakura, A. P. Tsai, and K. Shibata, Phys.
Rev. Lett. 81, 2364 (1998); T. J. Sato, H. Takakura, A. P.
Tsai, K. Shibata, K. Ohoyama, and K. H. Andersen, Phys.
Rev. B 61, 476 (2000).

[8] L. P. Kouwenhoven, F. W. Hekking, B. J. van Wees, C. J. P.
Harmans, C. E. Timmering, and C. T. Foxon, Phys. Rev.
Lett. 65, 361 (1990); R. Ugajin, Physica (Amsterdam) 1E,
226 (1997); M. Hörnquist and T. Ouchterlony, Physica
(Amsterdam) 3E, 213 (1998).

[9] T. Giamarchi and H. J. Schulz, J. Phys. (Paris) 49, 819
(1988); Phys. Rev. B 39, 4620 (1989).

[10] M. Tsuchiizu and Y. Suzumura, J. Phys. Soc. Jpn. 68, 3966
(1999).

[11] S. R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev.
B 48, 10 345 (1993).

[12] K. Hida, J. Phys. Soc. Jpn. 65, 895 (1996); Errata 65, 3412
(1996).

[13] F. Iglói, L. Turban, D. Karevski, and F. Szalma, Phys. Rev.
B 56, 11 031 (1997); F. Iglói, D. Karevski, and H. Rieger,
Eur. Phys. J. B 5, 613 (1998).

[14] R. Penrose, in Introduction to the Mathematics of Qua-
sicrystals, edited by M. Jaric (Academic Press, New York,
1989), p. 53.

[15] T. Narushima, T. Nakamura, and S. Takada, J. Phys. Soc.
Jpn. 64, 4322 (1995).


