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Vortex Entry and Nucleation of Antivortices
in a Mesoscopic Superconducting Triangle
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The nucleation of superconductivity in mesoscopic equilateral triangles is investigated by using the
linearized Ginzburg-Landau equation (LGLE). The trigonal symmetry of the sample has a profound
effect on the superconducting state in the presence of a magnetic field H leading, in particular, to the
formation of antivortices in symmetry-consistent states. For the same given irreducible representation,
vortices enter always by three via the middle of the edges, approach the center, and then are dispatched
towards the corners of the triangle. The measured superconducting phase boundary Tc�H� is in good
agreement with the Tc�H� line found from the LGLE.
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The superconducting state in microcylinders and disks in
an applied magnetic field nucleates in the form of the giant
vortex state (GVS) [1–4]. The phase boundary in the H-T
plane [critical temperature vs field Tc�H�] shows oscilla-
tions corresponding to the cusplike Tc�H� line formed by
the states with different orbital quantum numbers. While
the GVS appearance in these samples is well understood
as a consequence of the rotational symmetry, the vortex
states in samples of lower symmetry are still under inves-
tigation [5–7].

The rotational symmetry of the disk, C`, can be ob-
tained in the limit N ! ` of the polygons with rotational
symmetry CN , where N is the number of vertices. Despite
the high symmetry of the regular polygon samples, it is
not easy to anticipate how the solutions for different vor-
tex states will look in this case.

In this Letter, using the linearized Ginzburg-Landau
equation (LGLE), the phase boundary Tc�H�, the prop-
erties of different vortex states, and vortex patterns evolu-
tion as a function of the applied field are investigated in a
mesoscopic equilateral triangle. The validity of the new
symmetry-consistent solutions is checked by comparing
the calculated and the measured phase boundary for a
mesoscopic Al triangle, although our approach remains
valid for other homogeneous superconducting polygons
(for square, see Ref. [8]). Remarkably, the presence of the
CN symmetry of polygons leads to a spontaneous forma-
tion of antivortices, which appear to conserve the discrete
symmetry imposed by the boundary conditions.

The nucleation of superconductivity is described via the
solution of the LGLE [9]:
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where c stands for the complex superconducting order
parameter and a is the first Ginzburg-Landau parameter,
related to the temperature-dependent coherence length,
j�T �, by a � 2h̄2�2m�j2�T �. Despite the simple form,
the solution of this equation is not trivial at all since the
superconducting boundary conditions are imposed on c

in finite samples [9]:
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It reduces to the Neumann boundary condition, =cjn � 0,
when the magnetic vector potential, A, can be chosen in a
form with zero normal component at the boundary of the
sample. Beside disks [10], such a choice has been achieved
only for infinite slabs and wedges [11,12].

We have developed an analytical gauge transformation
for the vector potential, which gives An � 0 along the
boundary line of an arbitrary regular polygon. The de-
tails of the method will be given elsewhere [13]. With
this choice of gauge, the problem reduces to an eigen-
value problem in a basis set of functions obeying Neu-
mann boundary conditions. It is convenient to take for such
a basis set the eigenfunctions of the zero field problem.
Given the threefold rotational symmetry of the problem,
the solutions of Eq. (1) are characterized by irreducible
representations (irreps) of the cyclic group C3. This group
contains three irreps, A, E2, and E1, with the characters
exp�inp�2�, n � 0, 21, and 1 under the threefold rota-
tion, respectively [14]. The unnormalized eigenfunctions
of the zero field problem, i.e., of the particle in the equi-
lateral triangular box obeying Neumann boundary condi-
tions, can be obtained [13] in the following form for the
irrep A:
2001 The American Physical Society 1323



VOLUME 86, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 12 FEBRUARY 2001
cA
pq�x, y� � cos

p

h
�2p 1 q�y cos

p

h

p
3 qx 1 cos

p

h
�2p 1 q�y cos

p

h

p
3 �p 1 q�x

1 cos
p

h
�p 1 2q�y cos

p

h

p
3 px, p $ q � 0, 1, 2, . . . ,

cA
pq�x, y� � 2sin

p

h

p
3 qx cos

p

h
�2p 1 q�y 1 sin

p

h

p
3 �p 1 q�x cos

p

h
�2p 1 q�y

2 sin
p

h

p
3 px cos

p

h
�p 1 2q�y, p $ q � 1, 2, . . . ,

(3)

where the first set is symmetric with respect to the vertical symmetry planes, and the second one antisymmetric. For the
irreps E1 and E2 [cE2 � �cE1��]:
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where the two signs correspond to the following quantum
numbers �n � 0, 1, 2, . . .�:

q � n 1 1�3, p � q, q 1 1, . . . , upper sign,

q � n 1 2�3, p � q, q 1 1, . . . , lower sign.
(5)

In Eqs. (3) and (4), h �
p

3 a�2 is the height, and a
the edge of the triangle. The above solutions are similar
by their structure to the solutions of the corresponding
“particle-in-the-box” problem with the c � 0 boundary
condition [15]. In the following calculations, for each
irrep, a basis of only the 40 lowest eigenstates was used.

Figure 1 shows the results of our calculations of the low-
est eigenstates. The lowest Landau level, which defines
the superconducting phase boundary Tc�F�F0�, shows an
oscillatory cusplike behavior as a function of F�F0, cor-
responding to the transitions between the states belonging
to different irreps. This closely resembles the situation in
a superconducting disk, with the important difference that
the latter has the symmetry C` of a two-dimensional ro-
tator with an infinite number of irreps (rotational quantum
numbers) [1]. As a consequence, in the low-energy re-
gion of the spectrum there is no “repulsion” of levels in
the disk, whereas for the equilateral triangle the solutions
of the LGLE show a regular pattern of avoided crossings
between levels belonging to the same irreps (Fig. 1a).

Figure 1b shows the measured Tc�H� phase boundary
for the mesoscopic Al triangle. The samples were prepared
by using electron beam lithography and lift-off techniques.
The critical temperature Tc is defined as the midpoint of
the resistive transition, where superconducting fluctuations
are unimportant. For more experimental details, we refer
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to Ref. [16]. The theoretical phase boundary is obtained
(Fig. 1a) as the ground state level. The agreement be-
tween the calculated lowest Landau level and the measured
Tc�F� is quite good, which justifies both the applicability
of the LGLE and the truncation of the basis set used in the
calculations. Especially the cusp positions coincide very
well (thin vertical lines). The asymptotic behavior of the
phase boundary line, at large flux, is in good agreement
with the ratio of critical fields Hc2�Hc3 � 0.41 found for
a p�3 wedge [12].

Each smooth line element on the phase diagram
a2�j2�T� versus field (F�F0) corresponds to an integer
winding number, L (vorticity), related to the fluxoid quan-
tization. This number is zero (no fluxoids) for the first
line starting on the left (Fig. 1a) and increases by 1 upon
each transition to the next ground state. In the case of a
disk the vorticity is just the orbital quantum number, L,
defining the flux, LF0, carried by the GVS [1,3]. There-
fore in a disk, the symmetry-consistent solutions of the
LGLE will correspond to the GVS (L . 1) pinned by the
rotational axis of the disk [1]. In the case of a triangle
the rotational axis is of finite order and, therefore, the dis-
tribution of vortices in the symmetry-consistent solutions,
considered here, is not a priori evident. Figure 2 shows
the distribution of the density of the order parameter
jcj2 in the states with vorticity L � 0, . . . , 3. In general,
jcj2 increases near the corners of the triangle, which
is in line with the known trend of nucleation of surface
superconductivity [5,6].

The density distribution jcj2 is always in agreement
with the C3y symmetry of the equilateral triangle, which
is higher than the C3 symmetry of the LGL equation. This
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FIG. 1. (a) Calculated Landau levels for an equilateral triangle
with boundary conditions given by Eq. (2). Continuous, dashed,
and dotted lines correspond to states of symmetry A, E1, and
E2. See the text for more details. (b) Experimental Tc�H� phase
boundary of an equilateral mesoscopic triangle of side length
a � 1.9 mm (open squares). The Tc�H� data have been cor-
rected for the presence of the measuring leads: a parabolic term
arising from the w � 0.33 mm wide contact lines was subtracted
from Tc�H�. The arrows and the vertical dotted lines indicate the
positions of the cusps in Tc�H�, as calculated from the LGL the-
ory. In order to obtain a good correspondence for the experimen-
tal and the theoretical positions of the transitions L ! L 1 1
an effective sample area Seff � 1.76 mm2 has been used. The
inset shows an atomic force microscopy (AFM) micrograph of
the studied triangle. The Tc�H� boundary is measured resis-
tively, with the transport current fed through contacts I1�I2,
and the voltage measured across the contacts V1�V2.

density is indeed invariant under the mirror reflections in
vertical planes, contained in the group C3y , since these
induce complex conjugation of the order parameter. In
the case of small L’s, vortices can occupy one central
position and three positions on the lines from the center
to the corners of the triangle. Integration of the gradient of
phase of the order parameter along the contours encircling
the vortices has shown that the vortices in corner positions
are always F0 vortices. In contrast, the central vortex can
have different winding numbers in order to adjust the total
vorticity of a given state. The contribution of the two kinds
of vortices (central 1 three corner) to the total winding
number of the states, shown in Fig. 2, is given by

L � n 1 3m, n � 0, 1, 21, m � 0, 1 . (6)

The nature of the central vortex changes, whenever vor-
ticity is changed by 1. In the ground state the central vortex
FIG. 2 (color). Density of the order parameter at the middle
of the lowest four cusps in the Tc�H� phase diagram in Fig. 1.
The highest jcj2 density is shown in red, followed by blue, and
green. The lowest values, drawn in yellow, indicate the positions
of vortices and antivortices. The panel for the E2 state, zoomed
16 times, shows the presence of an F0 antivortex in the center.

is absent in the n � 0 state, it is a F0 vortex in the n � 1
state, and it is an antivortex (2F0 vortex) in the n � 21
state (see Fig. 2). The sequence of winding numbers of
the central vortex �21, 0, 1� is periodically repeated when
going from left to right. Note that such a relation between
the winding numbers of the central vortex and the sym-
metry of the order parameter is already expected from the
definition of the basis functions of irreps [14]. Actually,
the states with winding numbers differing by multiples of
three correspond to the same irrep. However the GVS does
not arise in the lowest Landau level: because the kinetic
energy of a vortex is proportional to L2, the system prefers
to split the giant vortex into a sum of smaller vortices [17]
if there are no special symmetry restrictions. This explains
why only three numbers mentioned above appear as wind-
ing numbers for the central vortex. On the other hand, the
formation of antivortices is dictated by discrete symmetry.
Indeed, in the state with L � 2, one cannot put two F0
vortices on the equilateral triangle keeping the C3y sym-
metry. The dilemma is solved by distributing three F0
vortices and one F0 antivortex.

Next we turn to the investigation of the flux patterns fol-
lowing one of the three continuous lines in the ground state
(Fig. 1a). The solutions of Eq. (1), for a field sweep along
eigenstates of the same symmetry, show that in all cases
the flux enters by three F0 vortices through the edges cen-
ters. This flux entry obeys the C3y symmetry constraints
of the jcj2 distribution, and moreover is physically jus-
tified because the density is the lowest just in these three
points on the sides of the triangle. The entrance itself takes
place exactly when the system passes over the top of an
avoided crossing barrier (see Fig. 1a). Consecutively, the
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FIG. 3. Schematic plots showing different stages of the vortex
entry for each given irrep: L � 4 (a), 3 (b), and 2 (c). Filled and
empty circles stand for vortices and antivortices, respectively.

vortices which entered laterally approach the center and
then, at some specific value of the applied field, are trans-
formed into three corner-directed vortices which are dis-
patched towards the corners, thus paving the way for the
entrance of the next vortex triade. The stages of the vortex
pattern evolution with increasing field are shown schemati-
cally in Fig. 3 for the three irreps. Most interestingly, the
mechanism of reorientation of the entered vortices differs
dramatically in the states of different symmetry. Thus in
the E1 state each of the entered vortices deconvolutes into
two F0 vortices and one F0 antivortex when approaching
the center of the triangle; while the F0 vortices move in
pairs towards the corners, the three antivortices annihilate
with the central F0 vortex to form a 2F0 giant antivortex,
which then splits back yielding the initial vortex in the cen-
ter and three F0 antivortices dispatched to the corners; later
on each of these antivortices meets two F0 vortices and re-
combines with them to a single F0 vortex. In the A state,
when the entered vortices approach the center of the tri-
angle, the central region explodes into three F0 vortices
and three F0 antivortices; while the antivortices annihilate
in pairs with the entered vortices, the three F0 vortices
from the central region move towards the corners of the
triangle. Finally, the simplest scenario of the vortex re-
orientation is achieved in the E2 state: the entered vor-
tices annihilate with the central antivortex resulting in a
2F0 giant vortex, which transforms into a F0 antivortex in
the center and three F0 vortices dispatched to the corners
of the triangle.

Local vortex imaging techniques, like scanning Hall
probe [18], scanning tunneling [19], and magnetic force
1326
microscopy [20], are very promising for visualization of
these predicted novel vortex patterns.

In conclusion, the nucleation of superconductivity in
mesoscopic equilateral triangles was investigated. This nu-
cleation is accompanied by the formation of the isolated
vortices rather than a GVS. The formation of antivortices
both in the stable vortex configurations and also at differ-
ent stages of the evolution of the vortex patterns has been
found. The antivortices originate from the competition be-
tween the infinite order rotational symmetry of the applied
field and the finite order point group of the superconduct-
ing samples. Our results apply to a finite temperature in-
terval close to Tc, where the effect of the nonlinear term in
the Ginzburg-Landau equations can be neglected. At lower
temperature the presence of the nonlinear term could give
rise to symmetry-breaking effects.
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