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Origin of the Boson Peak in Systems with Lattice Disorder
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The origin of the boson peak in models with force-constant disorder has been established by cal-
culations using the coherent potential approximation. The analytical results obtained are supported by
precise numerical solutions. The boson peak in the disordered system is associated with the lowest
van Hove singularity in the spectrum of the reference crystalline system, pushed down in frequency by
disorder-induced level-repelling and hybridization effects.

DOI: 10.1103/PhysRevLett.86.1255 PACS numbers: 63.50.+x, 63.20.–e
The physics of atomic vibrations in crystals is well under-
stood. Disorder produces new features in such dynamics.
The van Hove singularities are smeared out, extra states (in
addition to the Debye-like acoustic waves) appear in the
low-frequency regime (the boson peak) [1], and band tails
containing localized vibrations are formed. In this Letter,
we discuss the origin of the boson peak, a problem which
has attracted a lot of experimental [2,3], simulational [4–8]
and analytical [9–12] activity and produced a number of
models for it, see, e.g., [8], and references therein, but
which is still far from being completely understood.

We chose to study models with lattice disorder [13–15].
In such models, the atoms occupy ideal crystalline posi-
tions, but, for example, are connected by springs charac-
terized by spring constants, k, distributed according to a
certain probability distribution, r�k�. This choice was dic-
tated by two reasons: (i) these models have the simplest
type of disorder and should reveal all the salient features,
with the existence of positional disorder not expected to
make a qualitative difference; (ii) there is a well-developed
analytical approach, the coherent potential approximation
(CPA), for such models having crystalline reference struc-
tures [14–19].

The CPA method is known to work very well for a wide
class of problems in the energy range where the eigenstates
are not localized. In our case, the vibrational modes in the
low-frequency regime (the boson-peak range and below)
are found not to be localized [20] (these could be resonant
states [8,21]), so that CPA should be valid. Below, we
develop the CPA method for vector atomic vibrations in
structural models with force-constant disorder (the boson
peak in a scalar model with spring constant disorder has
been studied in Ref. [6]), obtain the vibrational density of
states (VDOS) in the whole frequency range, including the
boson-peak region, and demonstrate the reliability of the
CPA by comparing it with precise numerical results. This
analytical approach allows us to understand and describe
quantitatively the origin of the boson peak in terms of
disorder-induced level-repelling and hybridization effects
which are general in nature and should play a similar role in
positionally disordered structures, although the formalism
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described below is not straightforwardly applicable for the
case of positional disorder.

We treat the problem in the harmonic approximation
when the classical description is adequate [14], and the sys-
tem can be characterized by the Hermitian dynamical op-
erator, D̂ �

P
�ia� �jb� D�ia� �jb��ji, a� 2 j j, a�� ��i, bj 2

� j, bj�, with ji, a� being the site basis describing the dis-
placement of atom i along the Cartesian direction a. The
matrix elements, D�ia� � jb� � �kij�2� �r̂ij�a�r̂ij�b (for
i fi j), obeying the sum rule,

P
j D�ia� �jb� � 0 [22],

are defined in terms of spring constants, kij , and unit
vectors, r̂ij , connecting the nearest-neighbor atoms i
and j (of unit masses). The eigenvalues (“energies”),
´, of the dynamical operator are nonnegative definite,
´ � v2 [ �0, `�, with v being the eigenmode frequency.

The basic idea of the CPA is to reduce the problem to
that with a known solution, namely, the problem of an ef-
fective crystal, where the atoms are connected by identical
springs characterized by an unknown (possibly complex)
spring constant, k̃ � z̃k0, with k0 being the average spring
constant in the real crystal around which the spring con-
stants are distributed in disordered structures (k0 � 1 be-
low). The dimensionless effective spring constant, z̃, can
be found from the self-consistent equation which results
from the requirement that the solution for the effective
crystal with one spring constant, z, chosen from a ran-
dom set (single-bond approximation [14,16,17]) averaged
over the distribution of z, coincides with the solution for
the perfect effective crystal:

ø
�z 2 z̃�

1 2 �z 2 z̃�a�´, z̃�

¿
� 0 . (1)

Here the configurational averaging ��· · ·�� is over the dis-
tribution of the dimensionless disordered spring constants,
z � k�k0. For definiteness, we consider below a box dis-
tribution for z [ �1 2 D, 1 1 D�. (The choice of other
distributions, e.g., normal, does not change the results
qualitatively.) The function a�´, z̃� is completely defined
by the properties of the reference crystalline structure and
can be easily derived using the results of Ref. [19],
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a�´, z̃� �
2D
Zz̃

∑
´

z̃
Gcryst

µ
´

z̃

∂
2 1

∏
, (2)

where Z is the number of nearest neighbors, D is the
space dimensionality in the case of vector vibrations, and
D � 1 for scalar vibrations independent of the space di-
mensionality (see, e.g., [6]). The function Gcryst�x� �R`

0 g
cryst
´ �´� �x 2 ´�21 d´ [with g

cryst
´ �´� being the crys-

talline VDOS] in Eq. (2) is an analytical continuation of
the crystalline Green function to the upper half of the com-
plex plane (see, e.g., [14]).

The quantity of interest is the VDOS for the disordered
structure, gdis

´ �´� which, within the CPA, obeys the follow-
ing equation:

gdis
´ �´� � 2

1
p

Im

∑
1
z̃

Gcryst

µ
´

z̃

∂∏
, (3)

with z̃�´� � z̃0 1 iz̃00 being found self-consistently from
Eq. (1). This can be easily done numerically in the whole
energy range, but in the low-energy limit �´ ! 0� analyti-
cal results can be derived. For small levels of disorder
�D ø 1�, the real part of the effective spring constant is
close to unity, z̃0 � 1 2 �2D�3Z�D2�1 1 O�´��. For ar-
bitrary disorder, z̃0�´� slowly approaches a constant value
as ´ ! 0, being the largest root of the equation which
follows from Eq. (2) for a box distribution of spring con-
stants, 4DD�Zz̃0 � ln��1 1 D 1 gz̃0���1 2 D 1 gz̃0��
(with g � Z�2D 2 1). This equation has a solution,
z̃0�´ � 0, D�, only for values of disorder which are not
too large, i.e., D # D�. The critical disorder, D�, can
be found numerically; e.g., for an fcc reference crystal,
D� � 1.296 and z̃0� � z̃0�0, D�� � 0.435. For D . D�,
the system becomes unstable (negative eigenvalues ap-
pear) because of a large concentration of negative spring
constants, which are introduced in the system for D . 1.

The low-energy imaginary part of the effective spring
constant, z̃00�´ ! 0�, approaches zero (if D # D�), as
z̃00�´� � C´D�2 (being a general consequence of the Debye
law for the reference crystal). The constant, C�,0�, de-
pends on the parameters of the model [23], and, for D ø 1,
C � C0 � 2pxD�2D�3Z�D2 with xD being the coeffi-
cient in the Debye law for the low-energy spectrum of the
reference crystal, g

cryst
´ �´� � xD´�D�2�21 [22].

Once z̃�´ ! 0� is known, the low-energy limit for the
VDOS in the CPA follows straightforwardly from Eq. (3)
in which Re�Gcryst�´�� � const and Im�Gcryst�´�� �
2pg

cryst
´ �´�z̃0� � 2pxD�´�z̃0��D�2�21 as ´ ! 0, so that

gdis
´ �´ ! 0� �

1
z̃0

gcryst
´

µ
´

z̃0

∂
�

1
z̃0

xD

µ
´

z̃0

∂�D�2�21

(4)

[see the inset in Fig. 1(a)]. This means, not surprisingly,
that in the low-energy regime the VDOS for disordered
systems (with D , D�) also satisfies the Debye law
�gv � 2vg´ ~ vD21�, but the coefficient before the fac-
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FIG. 1. (a) The reduced VDOS, gv��2xDvD21�, for different
degrees of force-constant disorder (as marked in the figure) of
an fcc structure (Z � 12, D � 3, vector model). The crosses
represent the exact numerical solution by KPM [25] for the fcc
reference structure containing 130 3 130 3 130 atoms for vec-
tor vibrations with D � 1. The inset shows the VDOS, gdis

v �v�,
demonstrating the vD21 law (here v2) in the low-energy part.
(b) The real part of the disordered Green function, Re�Gdis�v2��,
versus v � �´�1�2. The critical behavior of Re�Gdis�v2�� for
values of D near D� � 1.296 is shown.

tor vD21 is larger for disordered structures than for the
corresponding crystalline reference structure, i.e., gdis

v �
�z̃0�2D�2g

cryst
v with z̃0 , 1 [see the inset in Fig. 1(a)].

In the reference crystal, the reduced VDOS,
�gv��2xDvD21��, begins to deviate from unity with in-
creasing frequency and finally exhibits a van Hove singu-
larity [see the peak in the solid curve around v � 1.4 in
Fig. 1(a)]. A similar effect occurs in disordered structures.
The reduced VDOS shows a greater frequency dependence,
eventually resulting in a peak below the van Hove singu-
larity [see Fig. 1(a)], which is called the boson peak [1].
This effect is due to the appearance of extra states in this
low-frequency range with a density, Dgv � gdis

v 2 g
cryst
v ,

also exhibiting a peak (sometimes called the boson peak
as well), the position of which in real glasses is normally
close to the position of the peak in the reduced VDOS (see
Ref. [24], and references therein). It is clearly seen from
Fig. 1(a) that the boson peak is generically related to the
lowest van Hove singularity for the reference crystalline
structure, which is shifted downwards and broadened by
disorder. A trace of this broadened and shifted “singular-
ity” should also be seen in the real part of the Green func-
tion, Gdis � z̃21Gcryst�´�z̃�. Indeed [see Fig. 1(b)],
Re�Gdis� does show a low-energy minimum (a broadened
kink singularity), the position of which is correlated with
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the position of the boson peak [cf. Figs. 1(a) and 1(b)]. This
low-energy minimum moves downwards in energy with
increasing disorder and reaches zero at D � D�, showing
typical critical behavior [see Fig. 1(b)] around it (to be
discussed elsewhere).

In order to confirm this generic relationship between the
boson peak and the lowest van Hove singularity in the ref-
erence crystal, we analyze the states, jd�, in the disordered
structure (e.g., in the boson-peak region) in terms of the
bare states, jk, b� (with k being the wave vector and b

numbering the branches), for the reference crystal. Differ-
ent bare states participate with different weights in a dis-
ordered state with energy ´, and the spectral density,
Akb�´� � �ND�21���

P
d j�k, b jd�j2d�´ 2 ´d����, describes

these weights [13]. The spectral density, as a function of
´kb , exhibits a single peak around the most probable value
and a high-frequency tail (see the dotted line in the inset
in Fig. 2). The crystalline states mainly contributing to a
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FIG. 2. Disorder-induced level-repelling effect: the frequency
of the disordered mode, v � ´1�2, versus mean crystalline fre-
quency, �vcryst� � ��´cryst��1�2 contributing to this disordered
mode for different degrees of force-constant disorder, D, as
marked. Solid circles represent the precise numerical solutions
for 12 3 12 3 12 atoms, fcc, vector model; the data in the low-
frequency regime are not reliable due to finite-size effects. The
level repelling of states, downwards in frequency for �vcryst� &
2 and upwards in frequency at higher frequencies, is evident
by reference to the straight line v � �vcryst�. The inset shows
the origin of the boson peak: the CPA curve (dashed line) for
D � 1 is plotted together with the reduced VDOS for the same
disordered structure (D � 1) along the vertical axis and for the
crystal along the horizontal axis (solid curves). The arrows show
the connection between the position of the lowest van Hove sin-
gularity (VH) and the boson peak (BP) via the CPA results. The
dotted curve represents the probability distribution (arbitrarily
scaled in height) of weights of the bare states (obtained by di-
rect diagonalization), gcryst

v Akb�v2�, as a function of the bare
state frequency, ´

1�2
kb for a disordered state at v � vBP � 1 with

the peak position at �´cryst
max �1�2.
particular disordered state with energy ´ can be character-
ized by the most probable, ´

cryst
max �´, D�, and/or average,

�´cryst�´, D�� � �gdis
´ �21

P
kb ´kbAkb�´�, bare energy,

which within the CPA has the following form:

�´cryst�´�� �
21

pgdis
´ �´�

Im

∑
´

z̃2 Gcryst

µ
´

z̃

∂
2

1
z̃

∏
. (5)

In the region of the mechanical stability of the model
�D , 1�, both of the energies, ´

cryst
max and �´cryst�, are close

to each other. The results of calculations of �´cryst�´�� ac-
cording to Eq. (5) are presented in Fig. 2, from which two
conclusions can be drawn. First, the reconstruction of the
bare crystalline spectrum by disorder can be described in
terms of level-repelling effects (see, e.g., [22]). Indeed,
states with �´cryst�´�� from the low part of the crystalline
band are pushed down in energy by predominant level re-
pelling by higher-lying states and hence ´ , �´cryst�´��
(the dashed lines are below the v � �vcryst� in Fig. 2 and
´ , ´

cryst
max in the inset), while the states from the upper

part of the band are pushed upwards due to predominant re-
pelling from the bottom states and ´ . �´cryst�´��. Second,
we can check that the states (eigenmodes) in the boson-
peak region mainly originate from the bare states located
around the lowest van Hove singularity. The inset in Fig. 2
clearly demonstrates this (the difference between ´

cryst
max

and �´cryst� is due to the broad high-frequency tail of the
spectral density, Akb). Therefore, Eq. (5), rewritten in the
form, �´cryst�´BP�� � ´VH, can serve to estimate the boson-
peak position, ´BP, via the position of the lowest van Hove
singularity, ´VH. When the disorder approaches the critical
value �D ! D��, the distribution Dgv�´� of extra states in
the low-frequency regime (which still mainly originate from
the van Hove singularity region) becomes very broad and
the position of the peak in Dgv�´� no longer coincides
with the position of the peak in the reduced VDOS, result-
ing in different positions of �´cryst�´BP�� (still close to the
lowest van Hove singularity) and ´

cryst
max �´BP� (not far above

the boson peak); this will be analyzed elsewhere.
Disorder results also in strong hybridization of the bare

localized states. This means that a disordered state jd� is
comprised of many crystalline bare states jk, b� with en-
ergies about �´cryst�´�� which actually belong to different
crystalline branches, b. The relative weights of different
branches, wdis

b , can be defined within the CPA as wdis
b �´� �

gdis
´,b�´��gdis

´ �´�, via the partial VDOS, gdis
´,b�´� �gdis

´ �´� �P
b gdis

´,b�´��, obeying Eq. (3) in which the crystalline

Green function, Gcryst, is replaced by the partial one, G
cryst
b ,

related to the corresponding partial crystalline VDOS,
g

cryst
´,b . The results for wdis

b �´� shown in Fig. 3 demonstrate
that the disordered states are indeed comprised of strongly
hybridized crystalline states from different branches. The
weights for different branches are approximately propor-
tional to the partial crystalline VDOS (actually, smeared
out by disorder, cf. the broken lines for the crystal with
the solid lines for the disordered structure in Fig. 3). This
1257
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FIG. 3. Branch-hybridization parameters, wdis
b (b � 1, 2, 3 in

the case of the fcc model, 12 3 12 3 12), versus frequency, v,
obtained by CPA (solid lines) and by precise numerical analysis
(open circles), for a disordered structure with D � 1. For com-
parison, the normalized partial VDOS for each particular branch
(two transverse, T1 and T2, and longitudinal, L) in the case of
the reference crystal is also shown. The numerical data below
v � 1 are unreliable due to finite-size effects.

means that, e.g., for the fcc structure, the disordered states
in the region of the boson peak originate mainly from
transverse phonons.

We checked the reliability of the CPA approach by cal-
culating the VDOS numerically using the kernel poly-
nomial expansion method (KPM) [25] (see Fig. 1) and
level-repelling and hybridization effects by direct diago-
nalization (see Figs. 2 and 3) and found good agreement
across the whole frequency range. We also performed a
similar analysis for a 2D triangular lattice and found simi-
lar agreement.

In conclusion, we investigated atomic vibrations in dis-
ordered systems with force-constant disorder. In such
models, (i) the low-frequency VDOS has a Debye-like
frequency dependence, albeit with a different coefficient;
(ii) the boson peak is related to the lowest van Hove sin-
gularity in the spectrum of the reference crystal, shifted
downwards in frequency due to level-repelling effects in-
troduced by the disorder; (iii) the disordered vibrational
states in the boson-peak region are strongly hybridized
crystalline states, with a predominant contribution of that
branch which is responsible for the relevant van Hove sin-
gularity in the reference crystalline spectrum. This model
of the boson peak is based on entirely general effects (level
repelling and hybridization), so that we believe it could be
extended to topologically disordered structures. At this
stage, in a speculative manner, we could assume that the
boson peak in topologically disordered structures is related
to the lowest van Hove singularities of the corresponding
crystalline counterparts (crystals having the same local or-
der as in the disordered systems, e.g., a-cristobalite for
silica glass [24], or the s phase for an icosahedral glass
[26]), shifted downwards in frequency by disorder. The
types of vibrational modes (acoustic/optic, transverse/lon-
1258
gitudinal) predominant in the boson-peak region are also
dictated by the types of phonons responsible for the low-
est van Hove singularities in the corresponding crystalline
counterpart.
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