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Electrostatic Mode Excitation in Electron Holes due to Wave Bounce Resonances
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A kinetic theory of resonant interaction between electrostatic waves and the bounce motion of elec-
trostatically trapped electrons is developed. Precise criteria are derived for the stability of electrostatic
potential structures which trap electrons in a highly magnetized plasma. The theory explains the energy
transfer from electron phase space holes to waves observed in simulations. It may also account for the
destabilization of electrostatic waves propagating obliquely to the geomagnetic field and some charac-
teristics of the holes as observed in the auroral ionosphere.
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Satellites have recently measured bipolar electric field
pulses in the current region of the auroral zone, the mag-
netotail, and the foreshock. These pulses have been linked
to electron phase space holes, stable nonlinear solutions
of the Vlasov equation, corresponding to areas of lowered
electron density and an associated positive potential that
maintains a population of trapped electrons [1–4]. Simu-
lations of magnetized holes in two and three dimensions
show them persisting for many hundreds of plasma peri-
ods before eventually developing kinks and decaying while
emitting Langmuir waves propagating obliquely to the am-
bient magnetic field, B [5]. These waves have also been
called electrostatic whistler waves [5,6]. In this Letter,
we develop a general treatment of the resonant interac-
tion of such electrostatic waves with the bounce motion
of electrons electrostatically trapped in phase space holes.
This interaction may be important in the auroral iono-
sphere, linking two widely observed phenomena: electro-
static lower hybrid waves and phase space holes.

This Letter begins with a general discussion of phase
space holes and the intense research activity their recent
discovery in the Earth’s space environment has spawned.
Then, we outline the derivation of wave growth rates due to
wave-bounce resonances with electrons trapped in a hole.
Next we use our theory to explain the simulation results.
We conclude with a discussion of the implications of our
theory for electron holes observed by satellites.

Electron phase space holes were originally discovered
during simulations of the nonlinear stage of the evolution
of the two-stream instability [7]. Their stability has
been examined in terms of Bernstein-Green-Kruskal
(BGK) modes, and nonlinear Landau damping [8–10].
Theoretical studies of phase space holes have acquired
renewed importance because of recent measurements of
bipolar electric field pulses — a signature of phase space
holes —made in the Earth’s ionosphere, magnetosphere,
and foreshock region [2,4,11–13].

Simulations have contributed to our understanding of
the complex nonlinear dynamics associated with electron
phase space holes [7,9]. Starting with two cold, counter-
streaming, electron beams, parallel to a uniform magnetic
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field, simulations show the growth of a linear two-stream
instability followed by the development of electron holes
with a phase space configuration illustrated in Fig. 1. The
discovery of holes in the Earth’s space environment has
triggered a number of additional numerical studies with re-
sults applicable to holes in space [5,13,14]. The research
presented in this paper is largely motivated by the discov-
ery that large-scale, 2D, electrostatic simulations show that
electron holes slowly decay while emitting electrostatic
waves [3,5]. These waves obey the dispersion relation
v � vp cosu where u is the angle between the wave vec-
tor k and B. The fastest growing modes propagate close
to but not perpendicular to B, with jkjlD , 0.3 where lD

is the Debye length.
To study electron hole stability, we start with a single

hole in a 1D equilibrium, and evaluate its stability against
3D perturbations. We are interested in strongly magnetized
electron holes, where Ve ¿ vp and Ve, vp are the elec-
tron cyclotron and plasma frequencies, respectively. Thus,
we are not in the regime treated by Muschietti et al. [15].
In our frame of reference the hole is not moving. Since

FIG. 1. Sketch of a phase space hole in 1D.
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electrons are highly magnetized we assume they move only
along x which is the direction parallel to B. Also, we ig-
nore ion dynamics. The hole potential, F0�x�, and the
equilibrium distribution, f0, satisfy

y≠xf0 2
q
m

≠xF0≠yf0 � 0 (1)

with possible BGK-type solutions. Equation (1) im-
plies that f0�x, y� is a function of only the electron
energy, e � my2�2 1 qF0�x�. Hence at equilibrium
all electrons conserve energy, and their equations of
motion are ≠ty � 2q≠xF0�m and ≠tx � y. In order
to test the equilibrium for stability against 3D elec-
trostatic waves we linearize the total distribution, f �
f0 1 df�x, y� expi�k� ? x� 2 vt� and the potential,
F � F0 1 df�x�expi�k� ? x� 2 vt�. The perturbed
Vlasov’s equation becomes

2ivdf 1

µ
y≠x 2

q
m

≠xF0≠y

∂
df �

q
m

≠xdf≠yf0 ,

(2)

while Poisson’s equation becomes �≠2
x 2 k2

��df �
2q�e0

R
dy df.

The linearized equation Eq. (2) can be solved using the
method of characteristics, following the phase space tra-
jectories of f0�x, y, t� constructed from the equations of
motion of the particles. We change variables from x, y to
e�x, y�, s�x�, and ŝ�y�, where s parametrizes the position
of a given electron of energy, e, along its trajectory. ŝ is
the sign of y, equal to 1 or 21 for right or left moving elec-
trons, respectively. Then, ≠x � q≠xF0�x�≠e 1 ≠s and
≠y � ŝmy≠e .

In the new variables y≠sf0�s, e, ŝ� � 0. Note
that y is now not an independent variable, but justp

2�e 2 qF0�s���m, a function of energy, and s.
In the new variables, Eq. (2) becomes 2ivdf 1

ŝy�e, s�≠sdf � q≠sdfŝy≠ef0. Removing the adiabatic
response from df, with the ansatz dg � df 2 q≠ef0df

we obtain

2ivdg 1 ŝy�e, s�≠sdg � qivdf≠ef0 . (3)

Equation (3) is a first-order ordinary linear differential
equation with a solution consisting of homogeneous and
1236
inhomogeneous parts, written dg�e, s, ŝ� � dgI 1 dgH

where dgH�e, s, ŝ� � dg1�e, ŝ� expivŝIs
s1

and

dgI�e, s, ŝ� � qivŝ≠ef0

Z s

s1

ds0

y�e, s0�
df�s0�eivŝIs

s0 .

(4)

In these expressions Ib
a �e� �

Rb
a dl�y�e, l� which is the

transit time of a particle with energy e moving between
points a and b along its trajectory defined by the equi-
librium F0. dg1�e, ŝ� and s1�e� are integration constants
along the characteristic, which are determined from bound-
ary conditions, and parametrized by energy.

Two classes of electrons exist. First, those with energy
0 $ e $ qFmax which are trapped with turning points
s1,2�e� given by e � qF0�s1,2�, and a bounce period
tb�e� � 2Is2

s1
. Second, there exist passing electrons

with e $ 0. To complete the solution of Eq. (3) we
need to specify boundary conditions for both classes
of particles. We apply periodic boundary conditions
to the entire system. This allows us to compare to
simulations and corresponds to the observed sequences
of bipolar structures. For the passing particles we re-
quire dgp�ŝ � 61, s, e� � dgp�ŝ � 61, s 1 L, e�
and df�x� � df�x 1 L� where L is the extent of the
system in the x direction and we can set dF�s� �P

l Fl expils�L. To lowest order in kxDdn�n0, where
dn is the density perturbation due to the holes, n0 is the
bulk density, and D is the hole width, the passing particle
contribution, dgp, becomes

dgp � qivŝ≠ef0

X̀
l�2`

Fl
exp�2ilps�L�

2ilpy�e, s��L 2 iŝv
.

(5)

For the trapped particles we require that the number
of particles of energy e approaching a turning point
s1,2 will be the same as the number of particles leaving
the turning point after being reflected from it; formally
dgt�ŝ � 1, si , e� � dgt�ŝ � 21, si , e� � dgi for i �
1, 2 resulting in

dg1 � 2
qv≠ef0

sinvI
s2
s1

Z s2

s1

ds0

y�e, s0�
df�s0� cos�vI

s2
s0 � . (6)

The problem is closed by Poisson’s law, which includes
passing and trapped electrons
2k2df 1
q
e0

X
ŝ�61

Z `

0

de

my�e, x�
dfp � 2

q
e0

X
ŝ�61

Z 0

qFmax

de

my�e, x�
dft . (7)
The passing electron terms contain poles as seen
from Eq. (5), which give rise to the usual parallel
Landau resonance if vL � 2ply for some integer l.
Their contribution to the growth rate is gk � 2vp 3

cosu
p

p �klD�23 exp�2�klD�22�. Additionally, if
sinvIs2

s1
�eR� � 0 for some energy 0 . eR . qFmax,

there is a pole in the trapped electron term of Poisson’s
law, as can be seen from Eq. (6) [16]. This pole expresses
the bounce resonance of the trapped electrons with an
electrostatic wave. Defining vb�e� � 2p�tb�e� to be the
bounce frequency, the resonance condition is

vtb�e� � 2np or v � nvb�e� . (8)

We outline now the calculation of the trapped electron
contribution to the growth rate. We solve Eq. (7) pertur-
batively, using the fluid theory as the zeroth order approxi-
mation and the kinetic terms as first-order corrections. We
write Eq. (7) symbolically as
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L0�v�df 1 LP�v�df � LT �v�df , (9)

where LP is the parallel Landau resonant term due to
the passing particles, and L0�v�df is the fluid contri-
bution, �≠2

x 2 k2
� 2 v2

p≠2
x�v2�df for the particular case

of the oblique Langmuir waves. LT �v�df represents the
bounce-resonant trapped electrons, and

LT �v�df � 2
q
e0

X
ŝ�61

Z 0

qFmax

de

my�e, x�
3 dg1�e, ŝ�eivŝIs

s1 . (10)

For the growth rate calculation we kept only the resonant
contribution to dft in Eq. (7). Left multiplying Eq. (9)
by df� and integrating over x we obtain the quad-
ratic �df�L0�v�df� 1 �df�LP�v�df� � �df� 3

LT �v�df�. Defining v0 and df0 to be an eigenvalue
and its corresponding eigenfunction for L0�v�df � 0,
we set v � v0 1 ldv and df � df0 1 ldf1
where l ø 1. We expand the quadratic in powers of
l, assume that the kinetic terms are of first order, and,
using the self-adjointness of L0�v0� for real v0, we ob-
tain dv≠v�df

�
0L0�v�df0�jv�v0 1 �df

�
0LP�v0�df0� �

�df
�
0LT �v0�df0�. Note that ≠vL0�v� � 2v2

p�x�v23≠2
x .

For convenience define Q � �df
�
0LT �v0�df0�. Using

dg1 from Eq. (6) we obtain, after some reorganization,

Q �
q2v

e0m

Z 0

qFmax

de
2≠ef0

sinvI
s2
s1

G�e� , (11)

where

G�e� �
Z s2

s1

dx
df

�
0�x�

y�e, x�
cosvIx

s1

3
Z s2

s1

ds0

y�e, s0�
df0�s0� cos�vI

s2
s0 � . (12)

For the pole corresponding to energy eR such that
vIs2

s1
�eR� � np we set e � eR 1 de and expand

sinvIs2
s1

�e� � de�21�nv≠etb�eR��2. The resonant part
of Q becomes

QR � 2ip
q2v

e0m

X
n

2≠ef0�en�
�21�nj≠etb�en�jv�2

G�en� , (13)

where n runs over all possible bounce resonances, and
en satisfies v � nvb�en�. Since the fractional electron
density change in the trapping region is very small, we
will consider the case of a single k harmonic, df0�x� �
A exp�ikxx�. We can evaluate G�en� to lowest order in
kxDT �en�v2

b�en��v2 where DT �e� 	 s2�e� 2 s1�e� is the
width of the well at a particular energy e. The simulations
show that the excited waves have parallel wavelengths sig-
nificantly larger than the width of the potential wells so
this approximation is easily satisfied. Finally, the growth
rate g due to the wave-bounce resonances is

g �
4

n0Lp

X
n

≠ef0�en�
j≠etb�en�j

DT �en�2

3 vb�en�
n3�1 2 �21�n coskxDT �en��

�n2 2 4k2
xDT �en�2�p2�2 , (14)
where L is the size of the entire system. Therefore, to drive
waves we need ≠ef0�en� . 0 at the resonant energies. The
even n contribution tends to zero as kkDT �en� ! 0.

The existence of resonances is a requirement distinct
from ≠ef0�e� . 0. Resonances exist if tb exceeds a cer-
tain limit, as seen from Eq. (8). No resonances exist
if vb�e� . vp for any trapped electron energy e corre-
sponding to a plasma not dense enough, or hole potential
wells that are too narrow and deep. We can have reso-
nances for multiple n, corresponding to various angles
of wave propagation. For higher u, the corresponding
resonant energy moves up in the well and the maximum
u corresponds to a resonant energy equal to the energy
threshold separating passing and trapped particles. On the
other hand, higher n implies higher kx . The present cal-
culation is valid for small kxDT �en�. For large enough kx ,
or equivalently small enough u, we do not expect wave
growth. This sets an upper limit to kx and equivalently a
lower limit to u.

The theory outlined above explains the wave excitation
in the simulation results [5]. The distribution of electrons
trapped in the holes appearing in these simulations satis-
fies ≠ef0�e� . 0. At the same time ≠etb�e� . 0 as shown
in Fig. 2 for the potential well of an electron hole prior
to onset of the electrostatic whistlers. The resonant con-
dition, Eq. (8), makes vptb�e� cos�u��2p an integer, for
electrostatic whistlers. In Fig. 3 we show a contour plot
of this function versus e and u, for the tb profile shown
in Fig. 2. The large contribution of the n � 1 resonance
as compared to n � 2 and the requirement kxDT , 1 for
growth make n � 1 the dominant term. Hence, the con-
centration of wave activity in a single band around u �
80±. The wave growth rate in the simulations is in order
of magnitude agreement with Eq. (14). Finally, parallel
Landau damping explains the absence of jkjlD . 0.3 in
the simulations.

Ergun et al. [2] shows the remarkable fit of a Gaussian to
the potential variation within observed electron holes and
the statistics of electron solitary structure occurrence rates

FIG. 2. Normalized bounce period vptb as a function of en-
ergy for the potential well corresponding to Fig. 3.
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FIG. 3. Contour plot of n � vptb�e� cos�u��2p showing
bounce resonances versus e and u for the potential well of a
simulated long-lived electron hole. The bottom of the potential
well is at 221.37 units.

versus their half-width and peak potential. To evaluate
the stability of these solitary structures against oblique
Langmuir waves we consider the family of potentials

F0�x� � F
mv2

pL2

q
max

µ
exp 2

x2

2L2 2 exp 2
s2

8L2 , 0

∂

(15)

parametrized by the ratio of the structure size, s, over the
Gaussian half-width, L, and the normalized amplitude, F.
Figure 4 shows the maximum propagation angle at which
waves would be bounce resonant with electrons trapped
within the structures, as determined by Eq. (8). The
observed solitary structures fall within 0.065 , F , 0.2
and 0 , L , 5lD , while s�L � 3.6 follows from the
criterion for identifying them. Figure 4 shows that the
resonance condition is satisfied for the observed structures.
Given that ≠etb . 0 for a Gaussian potential, instability
requires ≠ef0 . 0 for the trapped electron distribution
and kks � jkjs cosu , 1 as discussed previously. These
conditions should not be difficult to satisfy for the ob-
served solitary structures, though precise information on
the trapped electron distribution is necessary to determine
growth rates.

In conclusion, we analyzed the resonant interaction of
electrostatic waves with the bounce motion of electrons
trapped in electron phase space holes. This mechanism
explains the growth of obliquely propagating electrostatic
waves in simulations of electron holes. The instability
criteria are not restrictive, and thus we believe that auroral
electron holes drive electrostatic waves in the ionosphere.
Wave growth comes at the expense of electron hole
1238
FIG. 4. Maximum propagation angle, u, of bounce resonant
waves for a two-parameter family of Gaussian potentials as
described in the text. The observations mentioned in Ergun
et al. [2] are within the shaded rectangle.

stability and a nonlinear theory should provide an estimate
of hole lifetime. Although we concentrated on the case
of obliquely propagating Langmuir waves, this bounce
resonance mechanism should also drive lower hybrid
waves under appropriate conditions.
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