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Pattern Formation in a Thin Solid Film with Interactions
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We investigate a new type of surface instability of a thin elastic film subjected to surface interactions
such as van der Waals and electrostatic forces from another solid surface in its vicinity. It is found that
a sufficiently soft (shear modulus ,10 MPa) and nearly incompressible film deforms to form an undu-
lating pattern without any mass transport. A novel feature is that the characteristic length scale of the
pattern is nearly independent of the nature and magnitude of the external force, but varies linearly with
the film thickness. These results explain some recent experiments and are applicable to problems such
as adhesion and friction at soft solid interfaces, peeling of adhesives, patterning of solid surfaces, etc.
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Surface instability of viscous thin liquid films engen-
dered by intermolecular interactions or external fields has
attracted much recent attention [1,2], where the length
scale and morphology of the instability depends very
strongly on the precise nature and magnitude of the
interactions. However, very recent experiments [3–5]
employing a variety of elastic thin solid films in contact
with different types of nearly rigid surfaces consistently
show a periodic elastic deformation of the film surface,
the wavelength of which is independent of the nature
of the interaction between the film and the contacting
surface. The wavelength is found to be always of the
same order as the film thickness and scales linearly with
it. There is as yet no precise theoretical understanding
of either the underlying physics of the instability or the
factors governing its characteristics. What happens when
a surface approaches a soft elastic film is of fundamental
importance in understanding morphological instabilities
that arise in such systems without any concurrent mass
flow. The interfacial instability in turn may have a
profound influence on the interfacial properties such as
friction and adhesion. Technological applications include
peeling of adhesives [6], stability of polymer brushes [7],
pattern transfer technology [2], etc.

Here we explore the stability of an elastic thin solid film
(initially stress-free) bonded to a rigid substrate whose sur-
face experiences effective forces which, in general, depend
on the proximity of the contacting surface and also on the
local film thickness. These forces may arise from any of
the various causes such as the long-range van der Waals
interaction with the contacting surface nearby and/or with
the substrate, an external electric field, etc. The analysis
presented in this Letter shows that morphological insta-
bilities of a thin solid film are independent of the nature and
strength of the interactions as long as it exceeds a threshold
value. Physically, this instability occurs due to a competi-
tion between the combination of elastic and surface ener-
gies which acts as the stabilizing factor and the interaction
energy with the contactor which is the destabilizing influ-
ence in the present problem. This may be contrasted to
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instabilities in prestressed solid films studied hitherto [8]
where the elastic energy is the destabilizing factor compet-
ing with the surface energy which inhibits surface rough-
ening. Pattern formation in prestressed solid films can also
occur due to nonlinear material behavior such as large de-
formation plasticity [9]. The key difference between our
system and those cited above is that those instabilities are
irreversible (due to diffusion, plasticity, etc.), while the
present instability in interreacting thin films is an elastic
one. In addition, the present instability occurs in soft films
while those studied previously occur in much stiffer semi-
conductor/metal films.

The system considered here is shown in Fig. 1— a film
of thickness h bonded rigidly to a rigid substrate described
by coordinates �x1, x2� such that the surface of the film S
interacting with external agency has x2 � 0. We restrict
attention to plane strain deformations of the film for the
sake of mathematical simplicity and to understand the es-
sential physics. The total potential energy of this system is

R
V W�e� dV 1

R
S�g

p
1 1 �u2,1�2 2 U�u ? n�� dS , (1)

where e is the strain tensor, W�e� is the elastic strain
energy density, g is the surface energy, U�u ? n� is the
interaction potential between the surface of the film and the
external agency such as a contactor or an electric field, u is

FIG. 1. Film bonded rigidly to a rigid substrate. The surface
of the film experiences external forces.
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the displacement vector, and n is the outward normal to the
surface. Linearized analysis is performed by expanding the
interaction term U�u ? n� in a power series about u � 0
and retaining all terms up to quadratic order in u. The
resulting approximate energy functional is

R
V W�e� dV 1

R
Sg�1 1

1
2 �u2,1�2� dS

2
R

S�U0 1 F0u ? n 1
1
2Y �u ? n�2� dS , (2)

where U0 � U�0�, F0 � U 0�0�, and Y � U 00�0�.
The equilibrium stress field s in the film [which mini-

mizes the potential energy (2) over an appropriate length
of the film] satisfies the equilibrium equation = ? s � 0
in V and the boundary condition

s ? n � gu2,11n 1 F0n 1 Y �u ? n�n (3)

on S. Taking the film to be an isotropic linear elastic
solid with shear modulus m and Poisson’s ratio n gives
a standard expression for the strain energy density [10]

W�e� � m�eijeij 1 n�ekk�2��1 2 2n�� (4)

with a resulting expression for the stress tensor expressed
in terms of the gradient of displacement. Thus the prob-
lem can be cast into a boundary value problem for the un-
known displacement field with the boundary condition of
vanishing displacements at x2 � 2h at the film substrate
interface in addition to (3).

The homogeneous solution.—A solution to the above
boundary value problem exists such that the stresses in the
film are equal everywhere. This homogeneous solution
�uh� is uh

1 � 0 everywhere, and uh
2 has a linear variation

with x2 starting from 0 at x2 � 2h, i.e.,
120
uh
2�x1, 0� � F0��Ym 2 Y �,

Ym � 2�1 2 n�m��1 2 2n�h . (5)

For the case when n � 0.5, i.e., the incompressible limit,
the homogeneous solution is such that the displacement
vanishes everywhere in the film, and a pressure field p
develops such that p�x1, x2� � F0. So long as Y , Ym,
the homogeneous solution is meaningful in that uh

2�x1, 0�
has the same sign as F0. This condition on Y is most easily
met when n is close to 0.5 (Ym tends to ` as n tends to
0.5), i.e., when the material is nearly incompressible.

Bifurcations.— If an inhomogeneous bifurcation solu-
tion exists, it can be taken to be of the form uh 1 u, where
the symbol u now stands for a “bifurcation” displacement
field. This field must also satisfy the equilibrium equa-
tions in the bulk and the rigid boundary condition at the
film substrate interface. On the surface of the film, the bi-
furcation field satisfies (here s is the additional stress due
to u),

s ? n � gu2,11n 1 Y �u ? n�n, (6)

instead of (3). The bifurcation fields are assumed to have
the form

uj�x1, x2� � eikx1uj�x2� , (7)

where k is a real positive wave number. The problem can
now be cast into the problem of finding those values of
k such that the functions uj�x2� are nontrivial. It can be
shown that (a detailed account will be published elsewhere)
nontrivial bifurcation fields of the form (7) exist for those
values of k that satisfy the equation
���k�4e2hkhk2�hm 2 �1 2 n�g� 1 �e4hk 2 1�kg�3 2 7n 1 4n2� 1

m��3 2 4n� �1 1 e4hk� 1 2e2hk�5 2 12n 1 8n2���������1 2 n� ��3 2 4n� �e4hk 2 1� 2 4hke2hk�� � Y . (8)
This relation is valid for the incompressible case as well
(i.e., when n � 0.5). Real roots of (8) are sought when
Y , Ym.

We first focus attention on the case when g vanishes.
Figure 2(a) graphically depicts the solution to (8); i.e., for
a given value of n, the values of k that solve (8) are plotted
as a function of hY�m. The important results may be noted
as follows: (i) There are no bifurcation modes for any value
of n when hY�m , 2. (ii) For all values of n, k � 0 is
a bifurcation mode when Y � Ym. (iii) When n # 0.25,
there are no bifurcation modes for Y , Ym. (iv) When
n . 0.25, there are two modes starting from a critical
value Yc [such as the point C shown in Fig. 2(a)] that de-
pends on the value of n until Y reaches Ym. When the film
is incompressible, hYc�m � 6.22 and the corresponding
bifurcation mode has hkc � 2.12. For this case bifurca-
tions are possible for all values of Y greater than 6.22m�h,
with two possible values of k as shown in Fig. 2(a).
Next, we consider the case when g fi 0. Figure 2(b)
shows a plot of the possible wave numbers of bifurcation
modes for various values of g with n � 0.4. The key
effects of the surface energy on the bifurcation modes are
noted as follows: (i) Surface energy inhibits bifurcation, in
that a larger value of Yc is affected with a nonzero value of
g. The critical mode kc decreases with increasing g. Both
of these results are as expected since a larger value of k
implies a larger energy penalty in terms of surface energy.
(ii) As g gets larger Yc approaches Ym. In fact, it can be
shown that Yc equals Ym when g � gm where gm�mh �
2n�4n 2 1��3�1 2 2n�2, a result which is pertinent when
n . 0.25. The curve for g�mh � 4.0 for the case of
n � 0.4, shown in Fig. 2, graphically illustrates this point.
If g . gm, then there are no bifurcations in the physically
meaningful range Y , Ym.

An asymptotic analysis of (8) under conditions most
relevant for elastomers (n ! 0.5 and g�mh ø 1) gives
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FIG. 2. (a) Bifurcation modes �hk� as a function of hY�m for
various values of n with g�mh � 0. (b) Bifurcation modes
�hk� as a function of hY�m for various values of g�mh with
n � 0.4.

the following simple scalings for the critical force parame-
ter and the wave number:

h
mYc � 6.22 2 10.46�1 2 2n� 1 4.49 g

mh ,

hkc � 2.12 2 2.86�1 2 2n� 2 2.42 g

mh .
(9)

Clearly, the length scale of the instability is independent
of the nature and magnitude of the interaction and elastic
modulus of the film. For most elastomeric films of mod-
erate thickness (n � 0.5, m � 1 MPa, h . 1 mm, and
g � 0.1 J�m2) the wavelength of the instability is of the
same order as the film thickness and scales linearly with
it, i.e., lc � 2.96h.

We now briefly consider modifications when the film is
considered to be a viscoelastic solid with viscous stresses
sy (in addition to elastic stresses) given by sy �
2h� 1

2 �= �u 1 = �uT � 2
1
3= ? �uI�, where �?� stands for the

time derivative, h is a viscosity parameter, and I is the unit
tensor. In the consideration of the time evolution of the
system, inertial effects are neglected. The perturbations u
of the homogeneous solution are assumed to grow in the
form uj�x1, x2, t� � eikx1uj�x2�evt and satisfy equilibrium
equations and boundary conditions. The solution for v
indicates that for Yc , Y , Ym, all perturbation modes
with wave numbers between the two bifurcation modes
given by the elastic analysis are unstable; i.e., v for these
modes are positive. Indeed, there is a mode with wave
number �km� between wave numbers of the two elastic
bifurcation modes such that the rate of growth �v� is
a maximum. Just as in (9), an analytical result can be
derived for km for small values of g�mh, n ! 0.5, and
h�Y 2 Yc��m ø 1:

hkm � hkc 1 �0.39 g

mh 2 0.46�1 2 2n�� h
m �Y 2 Yc� .

(10)

The key result is that for an incompressible material, with
g�mh ø 1, the critical viscoelastic mode is identical with
the critical elastic mode obtained in Eq. (9).

The whole picture of stability and bifurcation in this sys-
tem and its dependence on the nondimensional parameters
�hY�m, g�mh, n� is depicted in Fig. 3. Region I in Fig. 3
is where the homogeneous solution is unique and stable
while the region marked III in the figure corresponds to
the case when the homogeneous solution is “catastrophic,”
in that the film jumps to make a uniform contact with the
contacting surface. Physically, this is the preferred mode
for highly compressible films subjected to strong attractive
forces. Region II is the most interesting— this corresponds
to nearly incompressible material behavior. In this region
the homogeneous solution is unstable, with two possible
elastic bifurcation modes.

Many material systems of scientific and technological
importance in the area of friction and adhesion where the
film is made of an elastomeric material (shear modulus
between 0.1–10 MPa) in close proximity or “contact”
�,25 nm� with a comparatively rigid contactor such as
glass, diamond, or steel have properties which fall in
the region II of Fig. 3. Particular examples of such a

ν

hY
/µ

0 0.1 0.2 0.3 0.4 0.50

2

4

6

8

10

II

2 ( 1 - ν)

(1 - 2 ν)

III

I
Yc(ν,γ/µh)h

µ

FIG. 3. The stable and unstable regions in the parameter space.
Region I: Homogeneous solution stable. Region II: Homoge-
neous solution unstable with two elastic bifurcation modes and
a fastest growing viscoelastic perturbation. Region III: Homo-
geneous solution is “catastrophic”.
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material system are those used in very recent experiments
[4,5] which have observed and quantified the instabilities
discussed in this Letter. The experiments in [4] used
silicone elastomer (shear modulus 0.6–1 MPa and sur-
face energy of 10 mJ�m2) for films and glass slides as the
rigid contactor, some of which where silanized. The elas-
tomeric films used in [5] were made of cross-linked poly-
dimethylsiloxane (shear modulus 0.07–2.0 MPa, surface
energy ,0.1 J�m2) with glass as the contactor. The above
works used films of thickness varying from 10 500 mm
and found that the wavelength of the instability depends
only on the thickness of the film and varies linearly
with it.

We now turn to a quantitative discussion of the results
of the above experiments [4,5] in comparison with our pre-
dictions. We consider a rigid contactor (glass) interacting
with the film (elastomer) via van der Waals forces. As-
suming that the contactor is at a distance d above the unde-
formed surface of the film, the van der Waals interaction U
can be taken to be U�u ? n� � A�12p�u ? n 2 d�2 with
F0 � A�6pd3, Y � A�2pd4. Taking the film to be made
of an elastomer (m � 1 MPa, n � 0.5, g � 0.1 J�m2)
and h � 10 mm with A � 10219 J, the film becomes un-
stable for intersurface distance d , 12.5 nm since hY�m

exceeds its critical value 6.27. The wavelength of the insta-
bility in this case is about 30 mm. Experiments in [4] indi-
cate that the relationship between the wave number of the
instability and the thickness of the film is hkc � 2.3 6 0.3
which is in excellent quantitative agreement with our pre-
diction of hkc � 2.14. Moreover, this relationship is not
sensitive to type of surface (silanized versus unsilanized)
used in the experiments —which corroborates with our
prediction that the wavelength of the instability is inde-
pendent of the nature of interaction as long as it exceeds
a threshold value. Experiments in [5] with films contact-
ing with a curved glass plate have hkc � 1.57; this rela-
tionship is also found to be independent of the details of
the interactions. The fact that the wave number depends
inversely with the thickness is in agreement with our pre-
dictions, the proportionality constant is different owing to
the fact that our analysis is based on a plane strain model
while the experiments are three dimensional.

These instabilities can also be triggered in systems
where a film interacts with an external electric field.
Experiments of this type have been conducted recently
[2] with liquid films. We present the discussion below
in the hope that it will motivate experiments of a similar
kind using solid films. These will not only serve to
validate the theory but also take important steps towards
the development of microscale pattern transfer technology
discussed in [2]. The system considered consists of two
plates separated by a distance d; the bottom plate is coated
122
with a nearly incompressible elastomeric film of thickness
h. A potential difference of V is applied between the two
plates. The quantity of interest is the value of the gap
thickness d 2 h at which instability occurs in the film.
Taking the interaction potential to be an electrostatic type
[2] and the mechanical properties of the elastomer to be
the same as in the previous case with a dielectric constant
of 3, we have calculated that the critical gap thickness
d 2 h of 0.05 mm for a film of thickness 0.1 mm with
the applied voltage of 100 V. A gap thickness smaller
than 0.05 mm will cause the film to buckle.

The key finding in this Letter is that an instability in
interacting soft films occurs which gives rise to a defor-
mation pattern whose wavelength depends only linearly
on the thickness of the film and not on the details of
the interaction. Our results agree quantitatively with avail-
able experiments. These results have important implica-
tions in problems of adhesion, friction, and cavitation at
soft interfaces.
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