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Bound Ro-Vibronic States of Triplet H3*
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On the basis of a new, highly accurate potential energy hypersurface for the lowest triplet state of
Hs*, 32,*, the bound ro-vibronic states are calculated for J = 5. Since the potential has very shallow
minima, those states exist only up to single vibrational excitation. The symmetry properties of the
ro-vibrational states are investigated. Further, it is demonstrated that the first excited triplet state, which
intersects conically with the 33, " state, has no effect on the reported ro-vibrational energies.
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L. Introduction.— Up to the present time the simplest tri-
atomic molecule, H3*, challenges both experimental spec-
troscopists and theoreticians [1]. Among the unsolved
problems is that of H3" in its electronic triplet state. It
has been known for a long time [2-5] that the lowest
triplet state, 33T, possesses three symmetry related shal-
low minima that might support bound ro-vibrational states.
Transitions involving the electronic triplet state might be
the source of some of the yet unassigned lines observed in
the hydrogen plasmas [6]. Thus, there is a strong demand
for accurate calculations of the bound ro-vibrational states
to be carried out [6,7]. The only potential energy hypersur-
face that has been available so far [4] is not of sufficient
quality to permit such calculations, as admitted by those
authors themselves. In the present paper we present the re-
sults of bound state calculations using a new and very accu-
rate local potential energy hypersurface that was obtained
by two of the present authors and their collaborators [8].

II. The potential energy hypersurface—The Hz*
molecule is linear in its lowest triplet state, with equilib-
rium bond lengths of R = 2.4537ay. Because of permu-
tational symmetry there are three equivalent structures,
separated by tunneling barriers of 2598 cm™!, at R =
R, = 5.403ayp, R3; = 1.992ay, and equivalent C,, ar-
rangements. The symmetry properties are best described
in symmetrized hyperspherical coordinates. We use here
the mass-scaled “democratic” coordinates as defined by
Whitten and Smith [9] and modified by Johnson [10].
The three internal coordinates are the hyperradius p and
the two angles 6 and ¢. They are related to the particle
distances by

%[1 + sin(6) sin(¢p + 47 /3)]"/2,
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with r; the position vector of particle i. Thus, for a
given value of p the geometry of a three-particle arrange-
ment is determined by the two angles § and ¢. The
equilateral arrangement is at § = 0, the north pole of
the half-sphere, while all collinear arrangements are at
0 = /2, the equator. ¢ is the longitudinal angle. A
contour plot of the potential energy hypersurface at p =
4.5ay is shown in Fig. 1. We use the stereographic projec-
tionx = 2p tan(#/2) cos(¢p) and y = 2p tan(6/2) sin(¢),
with) =< ¢ =27mand0 =0 = 7/2. Atx = Oandy =
—2p,or § = 7/2 and ¢ = 3 = 37/2, we encounter
the singularity (1,2) — 3, i.e., R3 = 0, where the positions
of particles 1 and 2 coincide. The two other singularities
are located at ¢ = ¢3 * 47 /3. In between are the three
symmetry related minima, 3-2-1, 2-1-3, and 1-3-2.

III. Symmetry properties.—The bound ro-vibrational
states were calculated using the method of hyperspherical
harmonics [11,12]. This method leads directly to a
symmetry classification of the calculated bound states
according to the three-particle permutation inversion
group, S3 X I [13]. This group is isomorphic with
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FIG. 1. Contour plot at p = 4.5ay, corresponding to the min-
ima. Energy in hartree units.

1183



VOLUME 86, NUMBER 7

PHYSICAL REVIEW LETTERS

12 FEBRUARY 2001

the molecular symmetry group [13] of tunneling H3*,
D3,(M), and has six irreducible representations: A}, A{
and A’2, A’z’ , which are symmetric and antisymmetric with
respect to a permutation of identical particles, and the
two twofold degenerate representations E' and E”. The
“prime” states are symmetric with respect to inversion of
the spatial coordinate system; the “double prime” states
are antisymmetric. Since the hyperspherical harmonics
provide a basis of this group, the problem of calculating
the bound ro-vibrational states is reduced to six subprob-
lems according to the six irreducible representations, for
each value of the total angular momentum [11,12].

We now investigate the symmetry properties of ro-
vibrational states of H3* in its lowest electronic triplet
state. The vibrational structure can be described in terms
of four normal vibrations: the symmetric stretching
vibration v, the twofold degenerate bending vibration
v;, and the antisymmetric stretching vibration v3. If the
twofold degenerate vibration v, is excited, another quan-
tum number, ¢, the quantum number of the vibrational
angular momentum, exists, which can take the values
vy, vy — 2,...,—vy. Neglecting the electronic spin, the
eigenkets of the ro-vibrational states can be written as

[ty = % ooy (NEm) = IN — €m)), ()

for € # 0 and
1
V2

for € = 0. In the above equations N denotes the total angu-
lar momentum minus the electronic spin, i.e., N = J — §,
and m its external projection. The internal projection has
to be identical to the vibrational angular momentum €. The
states defined in Eq. (2) are eigenstates of the operator for
the inversion of the spatial coordinate system, E*, with
characters [13]

x5 (W) = ()N 4)

The two states with € # 0 are split in energy, which is
known as €-type doubling.

In the group D-.;,(EM), which is the appropriate group as
long as tunneling can be neglected, the vibrational states
(v1,v5,v3) = (0,0°,0), (1,0°,0), (0,1',0), and (0,0°, 1)
transform as 3, %, 2,7, IT,, and 3, ". (D.;,(EM) denotes
the extended molecular symmetry group, which is used
for the classification of the vibronic states, while D, (M)
denotes the molecular symmetry group used for the clas-
sification of the ro-vibronic states [13,15].) Since the
electronic triplet state has X," symmetry, the vibronic
symmetries of the vibrational states are, neglecting the
electronic spin, ,*, 3,7, II,, and 3,". When rota-
tion is taken into account, the vibronic II, state is split
into ro-vibronic states of %,* and 3, symmetries. The
symmetries of the rotational levels of each of the vibronic
states in the molecular symmetry group Ds;(M) can be

W) = — |¥™) 3)
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obtained using Eq. (4) and the character table of De,(M).
Alternatively, they can be read off from Fig. 17-6 of [13],
which is related to Fig. 99 of [14]. The result, as well as
Herzberg’s [14] s/a classification for the symmetry behav-
ior of the ro-vibronic states with respect to permutation of
identical nuclei, is presented in Table I. Note that the *
labels in Herzberg’s figure correspond to the superscripts
of the ro-vibronic symmetry labels.

The s/a classification is useful for the determination
of the statistical weights. In the case of 'H3™, the three
nuclear spins of the protons can be coupled to a totally
symmetric quartet state [, ", i.e., (s) symmetry] and two
doublet states [2, *(s) and 2, " (a)]. To yield a total wave
function that is antisymmetric with respect to an odd ex-
change of the protons, the ro-vibronic functions of sym-
metry (s) can be combined only with the antisymmetric
doublet nuclear spin state, resulting in a statistical weight
of 2, while the ro-vibronic functions of symmetry (a) can
be combined with both the quartet and the symmetric dou-
blet nuclear spin states, thus resulting in a statistical weight
of 6.

The potential energy hypersurface shows three equiva-
lent minima which we denote as I, II, and III. The true
wave functions must therefore be a superposition of local-
ized functions |W=). Following [16], we write

W) ~ |7 + W) + |1P5,) (5)
and
Wi ~ W) + o)) + o), (6

Wi, ~ W5 + 0?1V + ol¥) (7)

with w = e%. The first ket, I‘I'f ), provides a one-
dimensional representation, while the other two, |\If§§>
and |‘I’E,7>, which are related by complex conjugation,
provide the two components of a two-dimensional repre-
sentation. The classification of the ro-vibronic states of
tunneling H3 " is with respect to the molecular symmetry
group D3, (M) and can be obtained from the classification
in D, (M) with the help of the reverse correlation Table VI
shown in the appendix. The symmetry classification is
presented in Table II. In D3,(M), the quartet nuclear spin
function transforms as A} while the two doublet functions
become degenerate (E' symmetry). The total wave func-
tion has to be antisymmetric with respect to an odd ex-
change of the protons and hence can be only of symmetry

TABLE I. Symmetry classification of the ro-vibronic states in
D..,(M). (0,1',0)% denote the ¢-type doublets.

FK‘VC
(v1, vy, v3) N even N odd
(0,0°,0) %" (a) 2, (s)
(1,0%0) %, (a) %, (s)
(0,1',0)+ %, (a) 2" (s)
0,1',0)— 3,7 (s) 3, (a)
(07 009 ]) 2g+ (S) 2g7 (a)
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TABLE II. Symmetry classification and statistical weights (in
parentheses) of the ro-vibronic states of triplet 'H3* in Ds;,(M).
(0,1',0)= denote the €-type doublets.

Frve
(Ul R v2€, 1_)3) N even N odd
(0,0°,0) A5(4);E'(2) AT(0);E"(2)
(1,0°0) A5(4):E'(2) AJ(0); E"(2)
(0,1',0)+ Aj(4);E"(2) A1(0); E'(2)
0,1',0)— A1(0);E'(2) A3 (4);E"(2)
(0,0°%1) A1(0;E'(2) A3(4);E"(2)

A} or AY. Therefore, the ro-vibronic states of A, symmetry
come with the quartet nuclear spin state, while those of E
symmetry come with the doublet nuclear spin state. The
proton spin statistical weights of the ro-vibronic states are
included in Table II in parentheses. The ro-vibronic states
of A; symmetry have the statistical weight 0.

1V. Topological effects.—Because of symmetry, the
potential energy hypersurface of the lowest triplet state,
33,%, has a conical intersection with the 32g+ state
at the D3, configurations, where the two states form a
degenerate 3E’ state. This intersection is very high in
energy. The depth of the potential wells of the 3.t
state is 2951 cm™!, while the conical intersection is
17992 cm™! above the minima (with the same value
of the hyperradius), thus not accessible for the bound
ro-vibrational states. To investigate the effect of the
conical intersection, we performed explicit calculations
using the mixed grid basis method in hyperspherical
coordinates suggested by two of the present authors [17].
These calculations were carried out with ordinary cyclic
boundary conditions and with modified cyclic boundary
conditions to account for the geometric phase. The results
obtained for the two sets of calculations are identical to

TABLE III. Ro-vibronic levels, in cm™!, of 'H3;" in the
SE,ﬁ electronic state for N = 2. The dissociation threshold is
1229.1 cm™! above the zero point energy of 1721.6 cm™!.

i Ap? Ay E' Al A3 E"
N=0
0 7387 0.0 0.0
1 973.0  738.8
2 973.1
N =
0 6664 666.4 72 664.7 7.2
1 981.8  749.0  664.7
2 749.0
3 981.9
N =
0 6806 263 26.4 6856  685.6
1 7694 9993  680.6 e -
2 e e 769.5
3 999.6

*Missing levels.

TABLE IV. Ro-vibronic levels, in cm™!, of 'H;* in the >3, *
electronic state for N = 5. Tunneling splitting is not resolved.

N  (0,0°0) (1,0°%0) (0,11,00+ (0,11,00— (0,0%1)
0 0.0 973.0 e e 738.7
1 7.2 981.8 666.4 664.7 749.0
2 26.3 999.3 685.6 680.6 769.4
3 54.8 1025.7 713.9 704.6 799.9
4 92.7 1059.9 752.9 736.8 839.9
5 140.1 1103.0 800.9 7775 890.0

all places. Thus, there is no topological effect present for
the bound states, which indicates that the bound states are
well localized in the potential minima.

V. Results.—Numerical calculations in the basis of
hyperspherical harmonics were performed as described
in [12], using nuclear masses. We noticed that for the
present system the hyperspherical harmonics expansion
converges only slowly, much slower than for the singlet
electronic ground state. Typical basis sets consist of
about 1500 symmetrized functions [11], contracted to
200 functions at the minimum of the potential. Numeri-
cal integration of the set of coupled equations in the
hyperradius p was then performed within a range of
2.0ap = p = 8.0ap and a step size of Ap = 0.05qy.
On the basis of our convergency studies and of occa-
sional cross-checks with the results obtained with the
independent method of two of us [17] we believe that
the reported numerical data should be exact to about
0.5 cm™! for the given potential energy hypersurface.
The complete data for all irreducible representations are
presented in Table III for N = 2. The pattern can be
understood as follows: For N = 0, which implies € = 0,
the wave functions must have positive parity, according
to Eq. (4), and hence must have A}, A5, or E/ symmetry.
When passing between even and odd N, the prime states
become double prime states and vice versa. As to the
states belonging to one-dimensional representations, they
change from A} to AY or from A} to A, keeping the
characters with respect to the operators (ij)*; see Table V
in the appendix. Of the (0, 1!,0) state, the negative linear
combination, Eq. (2), has the same parity as the € = 0
states, while the positive linear combination has opposite

parity.

TABLE V. Correlation table between D3,(M) and Do, (M),
containing, in addition, the characters with respect to X(”) and

x X D3;, (M) Doy (M)
Al 3"
-1 -1 A I
0 E' et
-1 Al 3.
-1 1 A3 3
0 0 E" S, @3,
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TABLE VI. Reverse correlation table between D.;,(M) and
D3;,(M) with the spin statistical weights for 'H;* given in paren-
theses.

Dy, (M) D5, (M) Dy (M) D3, (M)
.72 Al(0) ® E'(2) 3.7 (6) AL(4) @ E'(2)
2,7 (6) A3(4) ® E"(2) 2,72 A7(0) ® E"(2)

It can be seen in Table III that the numerical data ob-
tained for any two corresponding tunneling states agree to
within 0.3 cm™!, a difference that is not significant. The
tunneling splitting is expected to be smaller by several
orders of magnitude. For Hj the tunneling splitting was
found to be of the order of 107 cm™! [18]. In the case
of triplet H3 ", the top of the tunneling barrier corresponds
to a Cy, van der Waals complex of Hy™ with equilibrium
bond length and an H atom far away at 5.4a¢y. Even though
only 876 cm™! above the zero point energy, this arrange-
ment is not accessible for the linear Hy* molecule as it
would require strong stretch bend coupling. Since the hy-
perspherical harmonics expansions converge only slowly,
in particular, for £ symmetry, and since the tunneling split-
ting cannot be resolved within the accuracy of the method,
numerical data for N > 2 were calculated for the one-
dimensional representations only. The rotational term val-
ues for N = 5 are presented in Table IV. Even for N = 2
we use the more accurate numerical data obtained for the
one-dimensional representations.
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Appendix.—1In Tables V and VI we show the correla-
tion tables between the molecular symmetry groups of lo-
calized triplet H3 ", D, (M), and of tunneling triplet H3 ",
D3, (M), which were constructed from the character tables
of these groups as given by Bunker and Jensen [13]. In
the first table we have included the characters y of the
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representations with respect to permutations of identical
particles, (ij), and permutations combined with inversion
of the spatial coordinate system, (ij)*. Note that for
the one-dimensional representations X' leads to the s/a
labels, while /)" characterizes the tunneling states, as
explained in the text.

*Corresponding author.
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