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Transition from Spherical to Deformed Shapes of Nuclei in the Monte Carlo Shell Model
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The transition from spherical to deformed shapes is studied in terms of large-scale shell-model cal-
culations for Ba isotopes as a function of valence nucleon number with fixed single-particle space and
Hamiltonian. A new version of the Monte Carlo shell model is introduced so as to incorporate pairing
correlations efficiently, by utilizing condensed pair bases. The energy levels and electromagnetic matrix
elements are described in agreement with experiments throughout the transitional region. The orbital
M1 sum rule is calculated as a measure of the deformation evolution, and the Q-phonon picture is shown
to be reasonable from spherical to deformed nuclei.
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The atomic nucleus exhibits a unique and characteris-
tic feature that, although the nucleus is a highly quantal
many-body system, it has a rather distinct shape. This
shape can be a sphere, an ellipsoid, or an object in be-
tween, depending on the numbers of protons and neutrons.
In nuclei at or near closed shells, the ground state is spheri-
cal, while the “phase” transition [1] from the spherical to
the deformed shapes occurs gradually as the nucleus moves
away from closed shells on the nuclear chart. This phase
transition affects properties of certain low-lying states, and
those states are called “quadrupole collective states,” be-
cause the deformation is primarily of quadrupole nature
and the shape is directly linked to the collective motion of
nucleons. Because of this collectivity, one has to study the
structure of heavy nuclei with many valence nucleons, in
order to investigate the phase transition precisely. In fact,
such studies have been carried out over decades both phe-
nomenologically and microscopically, but a microscopic
calculation covering the transitional region in a chain of
heavy nuclei (e.g., isotopic chain) has so far been miss-
ing, because dynamical many-body correlations are quite
important in the transitional region, but the evaluation of
such correlations inevitably requires a theoretical frame-
work beyond the mean field approaches. We further note
that the RPA (or TDA) calculation can be used for a cer-
tain lowest vibrational state but not for higher states. On
the other side, the nuclear shell model is a natural choice
for such studies, because all dynamical effects within the
given Hilbert space are treated equally well and also be-
cause the full spectrum can be calculated in principle. For
heavy nuclei exhibiting prominent shape phase transition,
however, the Hamiltonian matrix becomes too large to be
diagonalized.

In this study, we present the first result of the Monte
Carlo shell model (MCSM) [2–8] applied to quadrupole
collective states of heavy nuclei, focusing on the shape
phase transition. The Monte Carlo shell model stands for
applications of the quantum Monte Carlo diagonalization
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method to the nuclear shell model. It will be demon-
strated that, by changing the number of valence particles,
the shape phase transition indeed occurs quite prominently
in heavy nuclei, while the Hamiltonian and the single-
particle orbits are being kept unchanged. Thus, this work
provides us with the first evidence, by means of micro-
scopic calculations beyond mean field approaches, that
the shape phase transition can occur due to the change of
valence particle number with a realistic Hamiltonian and
shell structure.

The isotopic chain of Ba isotopes with N $ 82 is cho-
sen as an example, because the shape phase transition is
seen clearly in experiments between 138Ba, a semimagic
spherical nucleus, and 148Ba, a rotational deformed nu-
cleus [9–13]. Only even-N isotopes are studied. The
full major shells are taken: 50 # Z # 82 for protons and
82 # N # 126 for neutrons. For 146Ba, the deformation
parameter deduced experimentally is b2 � 0.22 [14]. For
heavier Ba isotopes, b2 is probably somewhat larger, but
for such values the closed shell of Z � 50 and N � 82
appears to be still stable in the Nilsson diagram. The en-
ergy spectrum becomes, towards 150Ba, very close to a ro-
tational one with axial symmetry. Thus, Ba isotopes with
N $ 82 turn out to be quite appropriate for the present
study. One may have to be cautious of the validity of the
closed shell for nuclei with Z . 56 and N � 92 because
of stronger deformation.

The MCSM is devised so that one can extract important
many-body bases out of the entire Hilbert space by using
a stochastic method and can then diagonalize the Hamilto-
nian in the subspace spanned by these bases [2–5]. Thus,
in the MCSM, most important bases for describing an as-
signed eigenstate are generated. The MCSM can hence
be referred to as an importance truncation scheme [6].
Many-body bases are given in the form of Slater deter-
minants in the existing MCSM calculations [2–8]. In the
present study, we investigate the structure of heavy nu-
clei where the pairing correlation plays a crucial role: the
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many-body basis is given in the form of a pair-condensed
state,

jf� � �L�yN j2� , (1)

where N is half the particle number, j2� means the closed
shell (i.e., inert core), Ly is the creation operator of a pair
of nucleons,

Ly �
X
ij

lijc
y
i c

y
j , (2)

with c
y
i being the creation operator of a nucleon and lij

denoting amplitudes. By having different sets of l’s, one
can have independent basis states, which span a subspace
for diagonalizing the Hamiltonian. If one generates suffi-
cient bases, the result becomes a good approximation. In
this work, pairs of neutrons and pairs of protons are con-
sidered, whereas proton-neutron pairs are not.

If one chooses the amplitude l’s to be consistent with
the u and y factors of the BCS (HFB, i.e., Hartree-Fock
Bogoliubov) formalism [1], the state jf� becomes identical
to the number projected BCS (HFB) ground state. Thus,
the new form of many-body basis can include pairing cor-
relations more efficiently.

The basis states are generated in the same way as in the
standard MCSM [2–5]:

jf�s�� � U�s� jf�0��, U�s� �
NtY

n�1

e2Dbh�sn�, (3)

where s denotes a set of random numbers (i.e., auxiliary
fields), jf�0�� indicates an initial state, and h�s� means
one-body Hamiltonian [2]. Here, Db and Nt are parame-
ters regarding the imaginary time evolution and can be
tuned for more efficient computation.

As the initial state, the HFB ground state is taken in the
present work. The operator U in Eq. (3) transforms c

y
i c

y
j

in Eq. (2) to Uc
y
i U21Uc

y
j U21. Note that U is nothing but

an exponential function of a one-body operator and hence
transforms a single-particle state to a linear combination
of single-particle states.

There are several options for the basis generation as dis-
cussed in [5]. In this paper, we adopt J-compressed bases
for which the angular-momentum projection is fully im-
plemented, giving the best accuracy [5]. We shall refer
to the basis jf� in Eq. (1) as the pair basis, in order to
distinguish from the basis given in the form of Slater de-
terminant. A similar type of bases is used in the VAMPIR

calculation [15].
We introduce the axial symmetry. This symmetry means

that the basis does not change with respect to the rota-
tion about an axis. The z axis is chosen as this symmetry
axis. In many deformed nuclei, this symmetry is found in
low-lying states, while the ground state and its vibrational
excitations of spherical nuclei can be described in terms
of axially symmetric bases because all orientations are in-
cluded through the angular momentum projection. The va-
lidity of this assumption is discussed later in some detail.
The single-particle states i and j in Eq. (2) are defined to
have a good z component of the angular momentum, de-
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noted Mi and Mj , respectively. Because of the axial sym-
metry, the z component of the angular momentum of the
L pair in Eq. (2) is zero, i.e.,

lij � 0 for Mi 1 Mj fi 0 . (4)

We next sketch the method for calculating matrix ele-
ments. The matrix elements of the unit, one-body, two-
body operators should be calculated between pair bases.
This can be worked out recursively by contracting nu-
cleon pairs as described in [16]. We introduce a pair
Vy � vijc

y
i c

y
j . The matrix of lij and vij are denoted

by l and v. For instance, the overlap, I �N�, between the
condensed states of the pairs L and V is given as

I �N� � �2jVN �Ly�N j2�

� 2
N
2

N21X
l�0

∑
N!

�N 2 l�!

∏2

I �N2l�. (5)

Those recursive formulas enable us to calculate values of
various matrix elements conserving the particle number.
We note that, for number-violating HFB wave functions,
one has to use a projection method like the one of [17].

Now we discuss the structure of 138 150Ba nuclei.
Single particle orbits, 2s1�2, 1d5�2, 1d3�2, 0g7�2, and
0h11�2 are taken for protons. Those for neutrons are 2p3�2,
2p1�2, 1f7�2, 1f5�2, 0h9�2, and 0i13�2. The single particle
energies are adopted from the experimental energy levels
of 133Sn [18] for neutrons and from those of 133Sb
[19] for protons. The two-body effective interaction be-
tween identical nucleons is assumed to be comprised of the
monopole pairing, quadrupole pairing, and quadrupole-
quadrupole interactions, the strengths of which are
denoted as g�0�, g�2�, and f �2�, respectively. These pa-
rameters are defined in the usual way as can be seen
also in [16]. The values of these strengths for protons
(neutrons) are fitted so as to reproduce the energy levels
of semimagic nuclei such as N � 82 isotones �134Sn�.
Note that levels of Sn isotopes heavier than 134Sn have not
been observed. The adopted values for neutrons (protons)
are g�0� � 0.13 �0.21� MeV, g�2� � 0.14 �0.22� MeV,
and f �2� � 20.0002 �20.0002� MeV�fm4, respectively.
Since f �2� is small and has only minor effects, for sim-
plicity, its value for neutrons is taken to be equal to that
for protons. The resultant levels of 134Sn are 0.76, 1.26,
and 1.26 MeV for the 21

1 , 41
1 , and 61

1 states, respectively.
Their experimental values are quite close: 0.73, 1.07,
and 1.25 MeV, respectively [20]. The levels of N � 82
isotones are also well reproduced, as presented for 138Ba
[9] below. The proton-neutron interaction is assumed to
consist of the quadrupole-quadrupole interaction. The
strength of this interaction is the only parameter needed
to be adjusted with N . 82 Ba isotopes. Its value was
taken as f �2� � 20.0014 MeV�fm4, so as to reproduce
the 21

1 level of 148Ba. The values of these interaction
strengths turn out to be reasonable from the viewpoint
of systematics. Note that the proton-neutron quadrupole
interaction is much stronger than the neutron-neutron
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or proton-proton one, which is actually a well-known
property. All these interaction strengths are kept constant
throughout the whole calculations below, as expected for
the effective interaction.

Figure 1 shows energy levels, Ex�J�, for yrast states
with the spin parity J1 up to J � 10. Ex�2� is as high as
1.5 MeV at A � 138, but it sharply drops down as more
valence neutrons are added and becomes less than 10%
for A � 148. This change is reproduced by the MCSM
calculation quite well. We emphasize again that only the
number of neutrons is varied, while no parameter in the
Hamiltonian is adjusted for the change. The experimen-
tal energy levels show a vibrational pattern for A � 140,
characterized by the ratio R � Ex�4��Ex�2� � 2. This
ratio becomes R � 3 at A � 148 experimentally, which
is close to the rotational limit with axial symmetry. The
rotation is directly connected to the deformation through
the Nambu-Goldstone mechanism: an ellipsoid rotates to
restore rotational symmetry broken due to the deforma-
tion from a sphere. The present calculation reproduces the
variation of the ratio R extremely well, indicating that the
shape phase transition originates in the change of the neu-
tron number in this case.

Other energy levels are also nicely reproduced by the
calculation. We note that the 81 level is raised from A �
144 to 146 both in experiment and in calculation. This is
actually due to additional binding of lower states.
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FIG. 1. (a) Energy levels of Ba isotopes. The lines are
calculations, while the symbols represent experiments [9–13].
(b) B�E2; 01

1 ! 21
1 � values of Ba isotopes. Symbols are

experimental [14], while the line is calculation.
At this stage, we examine the assumption of the axial
symmetry. Experimental data for even-N Ba isotopes with
N . 82 are consistent with this assumption. For instance,
the 21

2 level is well above the 41
1 level for all those iso-

topes. This assumption is examined within the theoretical
calculation as well. We take the 61 state of 140Ba as an
example. First, 20 bases are generated with the axial sym-
metry. We then generate another 20 bases with various
triaxial deformation. We combine these triaxial bases with
the bases with the axial symmetry and span a larger Hilbert
subspace. The energy eigenvalue is then lowered only by
about 10 keV, which is rather small compared to the 61

excitation energy, 1.83 MeV. Note that there are certain
nuclei where the axial symmetry is not valid and such nu-
clei are described by bases without this symmetry in the
MCSM [21].

We now turn to E2 transitions. Figure 1 shows also val-
ues of B�E2; 01

1 ! 21
1 �. Since this quantity is nothing but

the square of the transition matrix element of the E2 mo-
ment operator, it becomes larger as the quadrupole defor-
mation becomes stronger. In fact, this value grows rapidly
as the neutron number increases, in agreement with ex-
perimental values. This increase of B�E2; 01

1 ! 21
1 � by

an order of magnitude between two ends is another indi-
cation of the shape phase transition. The effective charges
are taken to be 1.6e for protons and 0.6e for neutrons.
The spectroscopic E2 moments are calculated, exhibiting
a similar trend.

The M1 strength to the scissors mode can be a good
measure of the deformation of the ground state [22,23].
This M1 strength is mainly due to the orbital contribution
in the M1 transition. We calculate the M1 sum rule for
the ground state with the orbital g factors having the free
nucleon values (i.e., 1 for protons and 0 for neutrons). The
spin contributions are omitted for simplicity. In Fig. 2,
the B�M1� sum rule thus obtained is plotted vs the corre-
sponding B�E2; 01

1 ! 21
1 � value. One finds a nearly per-

fect linearity between the two quantities. This seems to be
the first microscopic calculation of this relation throughout
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FIG. 2. Orbital B�M1� sum rule from the ground state plotted
vs the corresponding B�E2; 01

1 ! 21
1 � value in Ba isotopes.
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FIG. 3. Q-phonon purity as a function of the mass number for
Ba isotopes.

the transitional region. The linear relation between the
above B�M1� and B�E2� has been derived based on the in-
trinsic deformation [22]. It is now shown to be valid in the
transitional region where such a static deformation picture
may not be applicable.

The structure of the wave function of quadrupole
collective states can be analyzed in terms of the Q-phonon
picture, which has been introduced originally for the
g-unstable nuclei [24]. In the Q-phonon scheme, the 21

1
state is constructed by applying an appropriate quadrupole
operator on the ground state. We here define the Q-phonon
purity

P �
j�21

1 j jQj j01
1 �j2P

i j�2
1
i j jQj j01

1 �j2
, (6)

where Q stands for the isoscalar quadrupole operator. Fig-
ure 3 shows the Q-phonon purity for the Ba isotopes. At
A � 138, P is only about half, but P becomes about 0.9 for
A � 140 and about 0.95 for A $ 140. This result indicates
that the Q-phonon scheme becomes a good approximation
for constructing the wave function once both valence pro-
tons and valence neutrons are present. This property has
been suggested by using observed B�E2� values [25], while
it has never been studied by microscopic calculations.

In summary, we have developed a new version of the
MCSM calculation with condensed pair bases. This ver-
sion enables us to carry out the shell-model calculations for
heavier nuclei which have collective properties and pair-
ing correlations. We studied the shape phase transition in
the Ba isotopes, presenting this phenomenon quite nicely
with fixed Hamiltonian and single-particle space. Namely,
the variation of the valence particle number is the driv-
ing force of the phase transition. The phase transition is
clearly seen through energy levels and E2 transitions. The
1174
scissors orbital M1 strength is confirmed microscopically
to be a clean physical quantity. The Q-phonon scheme is
shown to be a reasonable approximation for a wide range
of nuclei. More systematic studies with a more realistic
effective interaction will be of particular interest.
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