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A continuous atom laser will almost certainly have a linewidth dominated by the effect of the atomic
interaction energy, which turns fluctuations in the condensate atom number into fluctuations in the con-
densate frequency. These correlated fluctuations mean that information about the atom number could
be used to reduce the frequency fluctuations, by controlling a spatially uniform potential. We show that
feedback based on a physically reasonable quantum nondemolition measurement of the atom number of
the condensate in situ can reduce the linewidth enormously.
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An atom laser is a continuous source of coherent atom
waves, analogous to an ordinary laser which is a continu-
ous source of coherent photon waves (light) [1,2]. Ideas for
creating an atom laser were published independently by a
number of authors [3–6], shortly after the first achieve-
ment of Bose-Einstein condensation (BEC) of gaseous
atoms [7–9]. There have since been some important ad-
vances in the coherent release of pulses [10,11] and beams
[12,13] of atoms from a condensate. Since the condensate
is not replenished in these experiments, the output cou-
pling cannot continue indefinitely [14]. Nevertheless they
represent major steps towards achieving a continuously op-
erating atom laser.

The coherence of an atom laser beam can be defined
analogously to that of an optical laser beam: the atoms
should have a relatively small longitudinal momentum
spread, they should ideally be restricted to a single trans-
verse mode and internal state, and their flux should be rela-
tively constant [2]. A fourth condition, rarely considered
for optical lasers because it is so easily satisfied, is that
the laser beam be Bose degenerate. This requires that the
atom flux be much larger than the linewidth (the recipro-
cal of the coherence time) [2]. A crucial contributor to the
linewidth of an atom laser is the collisional interaction of
atoms, which is negligible for photons. This is difficult
to avoid because it is the collisions between atoms that
enables BEC by evaporative cooling, at present the only
method for achieving an atom laser.
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In this Letter we show that using a feedback mecha-
nism can reduce the effect of atomic interactions on the
atom laser linewidth by a factor as large as the square
root of the atom number. For a single-mode condensate
the dominant effect of collisions is to turn atom number
fluctuations in the condensate into fluctuations in the en-
ergy, which are equivalent to frequency fluctuations. By
monitoring the number fluctuations, it is possible using
feedback to largely compensate for the linewidth caused
by these frequency fluctuations. The key practical points
are that the measurement does not rely upon any external
condensate phase reference and that the control requires
only the ability to change the energy of the atoms, which
could be done with a spatially uniform optical or magne-
tic field.

We begin by deriving the standard laser linewidth (for
noninteracting bosons) using a simple method which is
applied to all later cases. We then derive the broadened
linewidth for an atom laser with strongly interacting atoms.
Finally, we show that feedback based on a quantum non-
demolition (QND) measurement of atom number in the the
condensate can greatly mitigate this linewidth broadening.

(a) Standard laser linewidth: To derive the standard
linewidth we use the usual single-mode model of the laser
[15,16]. Far above threshold, the laser mode has Poisso-
nian number statistics. In the absence of thermal or other
excess noise, its dynamics are modeled by the completely
positive master equation [17,18]
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�r � kmD �ay�A�ay�21r 1 kD �a�r . (1)

Here k is the loss rate, m ¿ 1 is the stationary mean boson
number, and a is the annihilation operator for the laser
mode. The superoperators D and A are defined as usual:

D �A�B � ABAy 2 A�A�B , (2)

A�A�B � �AyAB 1 BAyA��2 . (3)

That Eq. (1) is of the Lindblad form follows from the
identity [2,17] D �ay�A�ay�21 �

R
`
0 dqD �aye2qaay�2�.

The stationary solution to this master equation is

rss � e2m
X
n

mn

n!
jn� �nj �

1
2p

Z 2p

0
du jreiu� �reiuj ,

(4)

where r �
p

m and jreiu� is a coherent state [15,16].
The coherence time of a laser is roughly the time for the

phase of the field to become uncorrelated with its initial
value. It is determined by the stationary first-order coher-
ence function

g�1��t� � Tr�ayeL tarss��Tr�rssa
ya� . (5)

A simple and useful definition is [2]

tcoh �
1
2

Z `

0
jg�1��t�jdt . (6)

Here the 1�2 is so that, for the standard laser, � � t
21
coh

will be the standard linewidth. In the cases we consider
it is a very good approximation [19] to put jg�1��t�j �
e2iv0tg�1��t� for some frequency v0. From Eq. (5), this
allows the integral in Eq. (6) to be evaluated, yielding

tcoh 	 2Tr�ay�L 2 iv0�21arss��2 Tr�rssa
ya� . (7)

Equation (7) can be evaluated numerically, for example
using the MATLAB quantum optics toolbox [20]. Analyti-
cally, it is easier to use the fact that Eq. (5) is unchanged
if rss is replaced by the coherent state jreiu� �reiuj for
arbitrary u. Using any suitable phase-space �a, a�� repre-
sentation, the coherence function then becomes g�1��t� �
�a��t����a��0��, where a�0� has a distribution correspond-
ing to jreiu�. Because fluctuations in the intensity n �
jaj2 are relatively small in a laser with m ¿ 1, the coher-
ence time is well approximated by

tcoh 	
1
2

Z `

0
j�e2idf�t��jdt 	

1
2

Z `

0
e2 1

2
dVf�t� dt . (8)

Here dVf�t� is the variance of df�t� � arg�a�t��a�0��,
and the second approximation relies on df�t� having
Gaussian statistics, as will be justified below.

For our laser model, the Q function is the most conve-
nient representation because of the identity

D �ay�A�ay�21r !
X̀
k�1

µ
2≠

≠n

∂k

Q�n, f� , (9)
1144
which, since the higher order derivatives are negligible,
can be truncated at k � 2. The master equation (1) thus
turns into a Fokker-Planck equation (FPE) for Q�n, f�
which can be linearized. Under this FPE, the number sta-
tistics remain those of the initial coherent state, as does
the number-phase covariance Cnf (i.e., it remains zero),
and the phase has Gaussian statistics with a variance that
increases as dVf�t� � �k�2m�t. Substituting this into
Eq. (8), we obtain t � 2m�k. This time is precisely
the coherence time. Its reciprocal is the standard laser
linewidth �0 � k�2m [15–18].

(b) Atom laser linewidth: As a model for an atom laser
we take the standard laser master equation (1) and add a
term 2iC�ayayaa, r�. This represents the self-energy of
the atoms due to collisions, where

C �
2p h̄as

m

Z
d3r jc�r�j4. (10)

Here c�r� is the wave function for the condensate mode,
and as is the s-wave scattering length. For the experi-
ments in Refs. [10–13], c�r� can be determined using the
Thomas-Fermi approximation, and we use this to obtain
the numerical values which appear later. The Hamiltonian
Cayayaa has no effect on the atom number statistics. Lin-
earizing the resultant FPE for the Q function yields the
phase-related second-order moments

Cnf�t� �
x

2
�e2kt 2 1� , (11)

dVf�t� �
x2

2m
�e2kt 1 kt 2 1� 1

k

2m
t . (12)

Here, we have used x � 4mC�k as a dimensionless pa-
rameter for the strength of the atomic interactions.

This expression for dVf�t� implies that the integrand
g�1��t� in Eq. (8) has the same structure as the analogous
expression, Eq. (184), derived in Ref. [21]. This was for a
condensate in dynamical equilibrium with thermal atoms.
Moreover, the three time scales identified in Ref. [21] have
the same physical origins as those in Eq. (12). The integral
in Eq. (8) can be evaluated analytically in two limits:

� � t21 �

(
k�1 1 x2��2m for x ø

p
m ,

2kx�
p

2pm for x ¿
p

m .
(13)

These correspond to the characteristic time constants
of Eqs. (187) and (186) of Ref. [21], respectively (see
Ref. [22] for a further discussion). Our two expressions
agree at x 	

p
8m�p, so we have an expression for how

� scales for all values of x . The second expression for
t, in the regime where the nonlinearity is dominant, is
familiar as the collapse time of an initial coherent state in
the absence of pumping or damping [23,24].

Using the preliminary atom laser experiments [10–13]
as a guide to realistic parameter values, the dimensionless
interaction strength x is found to always satisfy x ¿ 1.
This implies a linewidth for the atom laser far above the
standard limit. If x * m3�2, then � would be larger than
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the output flux km, and the output would cease to be
coherent. It is thus of great interest to find methods for
reducing the linewidth due to atomic interactions.

(c) Effect of QND-based feedback: Atomic interactions
do not directly cause phase diffusion. Rather, they cause a
shearing of the field in phase space, with higher amplitude
fields having higher energy and hence rotating faster. The
linewidth broadening which results is a known effect for
optical lasers with a Kerr (x �3�) medium [25]. The shearing
of the field is manifest in the finite value acquired by the
covariance Cnf�t� in Eq. (11). It means that information
about the condensate number is also information about the
condensate phase. Hence, we can expect that feedback
based on atom number measurements could enable the
phase dynamics to be controlled and the linewidth reduced.

It might be thought that one could measure the atom
number by diverting some of the atom laser output beam.
It turns out that this sort of measurement is effectively
useless for reducing the linewidth. For this reason we
consider instead quantum nondemolition measurements of
atom number, which works very well [26].

QND atom number measurements can be performed on
the condensate in situ using dispersive imaging techniques
[28]. We consider a far-detuned probe laser beam of fre-
quency vp and cross-sectional area A (assumed larger
than the condensate) which passes through the condensate.
For simplicity, we assume that the distortion of the beam
front, and the mean phase shift, are removed by a suit-
able “anti-mean-condensate” lens. For a single atom, the
interaction Hamiltonian with the probe beam in the large
detuning limit is

h̄
V2

p

4D
� h̄byb

µ
h̄vpG2

8ADIsat

∂
� h̄bybu , (14)

where Vp , D, G, and Isat have their usual meaning. Here
b is the annihilation operator for the probe beam, normal-
ized so that h̄vpbyb is the beam power. The effective
interaction Hamiltonian for the whole condensate, minus
the mean phase shift, is thus

Hint � h̄u�aya 2 m�byb , (15)

where u, defined in Eq. (14), is the phase shift of the probe
field due to a single atom.

From Eq. (15), the back action of the probe fluctuations
on the condensate can be evaluated using the techniques of
Ref. [29] and results in the extra phase diffusion

�r � b2D �e2iu�aya2m��r 	 ND �aya�r . (16)

Here the approximation requires
p

m u ø 1, and

N � b2u2 � Pu2�h̄vp , (17)

where b � �bin� and P is the mean beam power. Equa-
tion (15) also gives the output probe field [29]

bout � e2iu�aya2m�bin 	 bin 2 iu�aya 2 m�b , (18)
where the same approximation has been used. The con-
densate number fluctuations can thus be measured by ho-
modyne detection of the output phase quadrature

IY
out � 2ibout 1 ib

y
out 	 IY

in 2 2bu�aya 2 m� . (19)

In order to control the phase dynamics of the condensate,
we use the homodyne current to modulate the phase. This
can be done, for example, by applying a uniform magnetic
field or far-detuned light field across the whole condensate.
We model this by the Hamiltonian

Hfb�t� � 2h̄aya

s
kl

4m

Z `

0
h�s�IY

out�t 2 s� ds , (20)

where h�s� is the response function of the feedback loop
and l is a dimensionless measure of the feedback strength.
Neither the measurement nor the feedback affect the atom
number statistics. In the ideal limit of instantaneous feed-
back, h�s� ! d�s� and we can apply the Markovian theory
of Ref. [29]. The total master equation for the atom laser
is then

�r � kmD �ay�A�ay�21r 1 kD �a�r 2 iC�ayayaa, r�

1 iN

s
l

n
�ayayaa, r� 1 N

µ
1 1

l

hn

∂
D �aya�r .

(21)

Here we have allowed for a detection efficiency h [29],
dropped terms corresponding to a frequency shift, and de-
fined a dimensionless parameter n � 4mN�k.

Proceeding as before, we find the Q phase variance:

dVf�t� �
1

2m
�x 2

p
nl�2�e2kt 1 kt 2 1�

1
1

4m

µ
2 1 n 1

l

h

∂
kt . (22)

If the feedback is to reduce the linewidth, we need �x 2p
ln�2 ø 4m and h must be large enough that hm ¿ 1.

In this case, Eq. (8) has a simple analytical solution:

� � t21 �
k

4m

∑
2 1 n 1

l

h
1 2�x 2

p
nl�2

∏
. (23)

Assume x is large enough that 2
p

h x . 1, which is
the physically interesting regime where the self-energy is
important. Then � is minimized for a feedback strength
of l �

p
h x 2 1�2, and a measurement strength of n �

l�h. The optimum linewidth in this case is

�min �
k

2m

µ
1 1

x
p

h
2

1
4h

∂
. (24)

Note that for a large interaction strength x there is an op-
timum measurement strength n 	 x�ph (or equivalently
N 	 C�ph) independent of the output coupling rate k.
From Eq. (21) we see that this effectively cancels the
self-energy term in the master equation (since l � hn).
A weak measurement will give poor information about the
1145
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atom number, with a high noise-to-signal ratio. Feeding
back the noisy current to counter the shearing caused by
the nonlinearity will thus add large phase fluctuations to the
condensate. On the other hand, if the measurement is too
strong the measurement back action in the form of phase
diffusion, as discussed above Eq. (17), will itself dominate
the linewidth.

In Fig. 1 we plot the approximate analytical expressions
for the linewidth in the absence [Eq. (13)] and presence
[Eq. (24)] of feedback as a function of nonlinearity x . We
also plot exact numerical results using Eq. (7), for m � 60.
The agreement is very good. It is evident that the QND
feedback offers a linewidth much smaller than that without
feedback for all values of x . 1�2

p
h. In fact, for x ¿ 1

the reduction factor approaches a maximum of
p

8m�p .
Most importantly, with feedback, the laser output remains
coherent until x * m2, a much higher value than the m3�2

which applies in the absence of feedback.
Let us summarize. An atom laser will almost certainly

suffer great linewidth broadening due to the collisional
self-energy of the atoms. This is because the self-energy
produces a correlation between the number and phase fluc-
tuations of the condensate. We have shown that this broad-
ening can be enormously reduced by controlling the phase
of the condensate based on a QND measurement of the
number of atoms in the condensate. The factor of reduc-
tion can be as large as the square root of the number of
atoms in the condensate (that is, a factor of perhaps 103).

A question of interest is, “How easy is it to obtain a
QND measurement of sufficient strength to optimize the
feedback?” We have seen above that we require n 	 x ,
which is equivalent to N 	 C. For the typical BEC param-
eters of Refs. [10–13], C 
 1022 s21. It may be verified
from Eq. (17) that it is very easy to obtain a measurement
strength N this large, even with D ¿ G.
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FIG. 1. Atom laser linewidth for k � h � 1 and m � 60,
plotted with and without feedback using both analytical and
numerical methods (see text).
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A related question is, “How much of a problem is atom
loss due to spontaneous emission by atoms excited by the
detuned probe beam?” The rate of this loss (ignoring reab-
sorption) is G 3 �excited population�. We would like the
ratio of this loss rate to the output loss rate km to be small.
In the D ¿ G limit, this ratio is given by

G
�G�2D�2�I�2Isat�m

km



2xIsatA
h̄vpGm

. (25)

For physically reasonable parameters of x 
 103, Isat 

10 W�m2, A 
 10211 m2, vp 
 3 3 1015 s21, G 
 3 3

106 s21, and m 
 106, Eq. (25) is indeed small (
1021).
In conclusion, there appear to be no fundamental reasons

that this proposal could not be put to good use when a
continuous atom laser is realized.

H. M. W. is deeply indebted to W. D. Phillips for the idea
of controlling atom laser phase fluctuations using atom
number measurements and for subsequent insightful com-
ments on this work.
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