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Pearling Instabilities of Membrane Tubes with Anchored Polymers
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We have studied the pearling instability induced on hollow tubular lipid vesicles by hydrophilic poly-
mers with hydrophobic side groups along the backbone. The results show that the polymer concentration
is coupled to local membrane curvature. The relaxation of a pearled tube is characterized by two different
well-separated time scales, indicating two physical mechanisms. We present a model, which explains
the observed phenomena and predicts polymer segregation according to local membrane curvature at
late stages.
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Single-component phospholipid membranes have been
the focus of intense interest in recent years, as the simplest
model system of biological membranes [1]. The latter
are highly complex systems, comprised of a bilayer
consisting of many types of lipids as well as a mesh of
macromolecules such as proteins and polysaccharides,
which participate in a large variety of cellular processes.
A natural step to mimic this complexity in a simple model
system is to study the association of polymeric molecules
with self-assembled single-component phospholipid
membranes [2].

Experiments with polymers, which associate with mem-
branes by anchoring, have revealed changes in the bending
moduli of bilayers of single-tailed surfactants [3] and strik-
ing morphological changes in vesicles [2,4,5]. Anchor-
ing occurs by the penetration of a number of hydrophobic
side groups grafted along a hydrophilic backbone into a
bilayer. Hollow tubular vesicles incubated in a solution
of anchoring polymers having a polysaccharide backbone
develop a pearling instability, above a threshold poly-
mer concentration [6]. This instability was not observed
with purely hydrophilic polymers and was effected by hy-
drophobic groups alone (without the backbone), but only
at concentrations 5 orders of magnitude higher than with
anchoring polymers.

In this experimental and theoretical study we investi-
gate the mechanisms responsible for pearling in our
system. It has been suggested that the induction of
curvature by the anchors, which sink into the membrane
to a depth of half a bilayer, may constitute a mechanism
which drives the pearling instability [2]. We present a
novel nonequilibrium experiment, which shows that two
independent mechanisms —spontaneous curvature and
area difference—contribute to the pearling phenomenon.
We also present new experimental and theoretical findings
showing inhomogeneous shapes at late stages.

In our experiments, vesicles were made of
stearoyl-oleoyl-phosphatidyl-choline (SOPC) with C18
0031-9007�01�86(6)�1138(4)$15.00
alkyl chains. The polymer used was hydrophilic dextran
with a molecular weight of 162 000 g�mol, functionalized
both with palmitoyl alkyl chains C16 and dodecanoic
NBD chains as fluorescent markers. The anchors are
distributed statistically along the backbone, spaced four
persistence lengths apart on average (one alkyl chain
per 25 glucose units). 1 ml droplets of SOPC in a 7:1
chloroform-methanol solution (10 mg�ml) were placed
on a glass coverslip forming small lipid patches. The
sample was prehydrated for 20 min under water-saturated
nitrogen, then hydrated with 0.1 mM potassium buffer
at pH 6.5. A large number of hollow tubes with one or
more lamellae formed after hydration, connected to the
lipid patch. The latter constitutes a reservoir with which
the tubes can exchange lipid molecules. Experiments
were conducted at room temperature, ensuring that the
membranes were in a fluidlike state. This allowed free
diffusion of both lipids and anchored polymers along the
bilayers. A drop of polymer solution of a given con-
centration was introduced through one of the cell sides.
The polymer was added after the tubes were formed,
and we therefore assume that it anchored mostly on the
outermost leaflet of the membrane. Its concentration on
the membrane grew from zero as more and more chains
anchored from solution. Events were observed by phase
contrast and fluorescence microscopy and recorded on
video. The NBD markers were excited with an argon laser
(488 nm) and observed with a CCD camera.

Figure 1 shows a tube undergoing pearling after addition
of the polymer. The instability typically starts near the end
cap of the tube (Fig. 1a) and gradually propagates along
the axis (Fig. 1b). This is presumably since the polymer,
diffusing from the side of the chamber, first reaches the tip
of the tube. Existing pearls become gradually more spheri-
cal (Fig. 1c). The rate at which pearls form depends on the
number of lamellae in the walls of the tube, as well as on
the concentration of polymer in the water (2 100 mg�l),
varying from several seconds to many minutes. A salient
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FIG. 1. Snapshots of a multilamellar tubular vesicle undergo-
ing a pearling instability: (a) 0, (b) 70 sec, and (c) 150 sec
after onset of pearling. The concentration of polymer is below
2 mg�l. (d) Image of an inhomogeneous pearled structure at
late stages of the instability, 900 sec after the onset of pearling.
The polymer concentration is below 100 mg�l, but much larger
than in (a)–(c). The scale bars represent 20 mm.

feature of Fig. 1c is the increase in pearl size towards the
end of the tube. This size gradient becomes much more
pronounced at very long times, as Fig. 1d illustrates for
another vesicle. The string of pearls separates into a set
of small, nearly uniform spheres connected to a group of
much larger spheres.

We have studied the onset of pearling by measuring the
wavelength of the fastest growing mode, P, just above
threshold, as a function of the radius of the unpearled
tube, R0. Within experimental accuracy P is linear in
R0, with a slope k � 2pR0�P � 1.07 6 0.05. This re-
sult agrees well with both the value k � 1 predicted by
theoretical models based on induced curvature as the driv-
ing mechanism [7] and the experimental results on pearling
instabilities in surfactant systems [8]. In tension-induced
pearling k � 0.7 [9], and thus our measurement excludes
pearling due to polymer or flow-induced tension in our
system.

Polymers anchoring to one side of a membrane can in-
duce curvature by two mechanisms. The first is an increase
in the area of the outermost monolayer into which anchors
sink [10]. The second mechanism is a local deformation
of the membrane which can be induced by either the an-
chors regarded as inclusions [11] or an entropic pressure
exerted by the polymer backbone [12]. These mechanisms
form the basis of two models that describe the tendency
of a membrane to display curvature [13]: the area differ-
ence elasticity (ADE) model and the spontaneous curva-
ture (SC) model, respectively. Calculations of equilibrium
shapes of vesicles with cylindrical symmetry based on both
the SC and ADE models indeed yield pearled shapes of
constant mean curvature called Delaunay surfaces [14].
The equilibrium shape is not sensitive to the pearling
mechanism.
Nevertheless, the dynamics of pearling may allow us to
distinguish between the two mechanisms and reveal their
presence, since they are characterized by well-separated
relaxation time scales. Inhomogeneities in both area dif-
ference and spontaneous curvature decay diffusively [15].
The relaxation of spontaneous curvature is associated with
polymer diffusion in the membrane. The relevant diffusion
constant was measured for various macromolecules and
falls in the range of 1 mm2�sec , Dsc , 5 mm2�sec [16].
Area difference relaxes via the sliding of one monolayer
with respect to the other and does not involve diffusion
of molecules over large distances. The diffusion constant
associated with ADE can be estimated from dimensional
analysis to be DADE � K0�b, where K0 is the compression
modulus of the membrane and b is the friction coefficient
between the two leaflets of a bilayer. Experimental esti-
mates of these parameters lead to 50 mm2�sec , DADE ,

500 mm2�sec [15]. Changes in the shape of a vesicle are
coupled to motion of the surrounding water, where the en-
ergy dissipated in the water is of the order of the curvature
energy of the bilayer. From dimensional analysis we find
that for both mechanisms, ADE and SC, the diffusion con-
stant associated with the displacement of water is Dhyd �
k�hR0 � 50 mm2�sec, where k is the bending modulus
of the membrane and h is the viscosity of water. Thus,
it is difficult to differentiate between hydrodynamical and
ADE effects by measuring the diffusion constant, but it
should be easy to distinguish between the SC and ADE
mechanisms.

To study the relaxational dynamics, a micropipette was
used to deliver locally a small volume (�1024 ml) of
polymer solution of concentration 20 100 mg�l close to a
tube (Fig. 2). Fluorescence images show that the polymer
was indeed concentrated in a local region shortly after the
injection. Pearling occurred, after an induction time in
which enhanced undulations were observed (Figs. 2a–2d).
The injection of the polymer was stopped after the pearled
region increased to a length of order 100 mm. The
pearled region then shrank gradually (Figs. 2e–2h) as
pearls opened up one at a time starting with those farthest
from the region of polymer injection. This decay process
took several minutes. Fluorescence images show that the
amount of polymer in the surrounding water is negligible
during the decay.

We measured the length of the pearled region, L, as a
function of time during the decay process. For diffusive
decay, we expect L2 � 2D�t̄ 2 t�, where D is the rele-
vant diffusion constant and t̄ is a constant. Figure 3 is a
typical example of the dependence of L2 on time (measure-
ments on several tubes yielded similar results). The system
exhibits diffusive behavior at early times with a diffusion
constant of D � 200 mm2�sec. We attribute this decay
to a combination of ADE and hydrodynamical effects. At
later times there is a sharp crossover to a much slower dif-
fusive behavior with D � 5 mm2�sec. According to our
estimates, this corresponds to polymer diffusion, and is
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FIG. 2. Snapshots of a local pearling experiment. (a)–(d)
show the formation of pearls as polymer is added from the mi-
cropipette at left. (e)–(h) show the subsequent opening of these
pearls as polymer diffuses down the stem. Times are 2, 5, 8, 11,
42, 46, 54, and 65 sec after the pipette is brought to the vicinity
of the vesicle. The scale bar represents 10 mm.

associated with the SC mechanism. Our results thus pro-
vide clear evidence that both ADE and SC mechanisms
influence the pearling instability.

We now carry out a theoretical analysis of the pearling
phenomena in the case of global application of the poly-
mer (Fig. 1). We consider closed vesicles with polymer
molecules only on the outer side of the vesicle and as-
sume that pearling is a result of the SC mechanism. (All
our predictions, except for the inhomogeneities in poly-
mer concentration, apply equally well to the ADE model.)
In contrast with standard curvature models [13], the spon-
taneous curvature in our system is a local quantity. We
assume that the spontaneous curvature is proportional to
the polymer concentration on the membrane, rH0. r��r�
is the fraction of the membrane area covered by polymer
molecules at the position �r and takes values in the inter-
val �0, 1	. H0 is the spontaneous curvature induced by full
coverage of the polymer. We further assume that the ob-
served vesicle shapes are close to the equilibrium shapes
under the constraints of constant vesicle volume and mem-
brane area. These shapes can be obtained by minimizing
the free energy of the membrane in the presence of the
polymer. The simplest free energy for our system is a sum
of the curvature energy and the entropy of mixing of the
polymer:
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FIG. 3. Squared length, L2, of the pearled portion of a tube as
a function of time t after the pipette is brought to the vicinity of
the vesicle (circles). The straight lines are fits of the early and
late evolutions to the equation L2 � 2D�t̄ 2 t�. At early times
D � 200 mm2�sec, while at late times D � 5 mm2�sec.

F �
Z

dA 
2k�H 2 rH0�2

1
kBT
a2 �r lnr 1 �1 2 r� ln�1 2 r�	� , (1)

where H is the local mean curvature, a is the characteris-
tic linear size of an anchored polymer molecule, and the
integration is over the area of the membrane. In principle,
the effects of gradients of polymer concentration should
also be included in the free energy. However, the inho-
mogeneities at equilibrium do not induce an extensive free
energy increase (see below), and we therefore ignore such
terms.

We have measured k � �20 6 5�kBT using the pipette
aspiration technique [17]. Structures with radii smaller
than optical resolution (�0.2 mm) were observed in our
experiments, giving a lower bound of H0 * 10 mm21 on
the spontaneous curvature induced by the polymer. Fi-
nally, a can be estimated as the radius of gyration of a
polymer performing a two dimensional random walk on
the membrane. Since the hydrophilic backbone is in wa-
ter, we assume a good solvent in semidilute conditions,
giving a radius between 40 and 80 nm.

We consider very long, cylindrically symmetric vesicles
and ignore the existence of the end caps, since the length of
most of the experimental tubes is larger than their radii by
2 orders of magnitude. To find the equilibrium configura-
tion of the system, the free energy (1) was minimized with
respect to the vesicle shape as well as the local polymer
density. This was done under the constraints of constant
vesicle volume, membrane area, and total number of poly-
mer molecules.

Ideally, the equilibrium configuration of the system
would have a homogeneous polymer distribution and a
curvature H � rH0 everywhere. Such a configuration



VOLUME 86, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 5 FEBRUARY 2001
minimizes the energy and maximizes the entropy simul-
taneously. This is indeed possible for a range of values
of rH0. For example, a vesicle with volume-to-area
ratio l can have the shape of a cylinder of radius 2l and
curvature H � 1��4l�. Another shape, having the same
value of l, is a chain of identical spheres of radius 3l

connected by infinitesimally narrow necks. In this case
H � 1��3l� everywhere. In fact, the vesicle’s curvature
may take any intermediate value, 1��4l� , H , 1��3l�,
because for each of these curvatures there corresponds
a Delaunay shape [18], with the same value of l. On
the other hand, it is not possible to construct a shape of
constant curvature for H . 1��3l� or for H , 1��4l�.

In our experiment the polymer adsorbs onto the mem-
brane gradually. Therefore, at the very early stages of the
experiment r , 1��4lH0�, and the shape of constant cur-
vature which minimizes the energy is a cylinder of radius
2l and curvature H � 1��4l�. This is consistent with our
experimental observations. In principle, we also have to
consider possible inhomogeneities in membrane curvature.
However, our calculations show that for small r such in-
homogeneities only increase the free energy.

At intermediate stages of the experiment the polymer
concentration is in the range 1��4lH0� # r # 1��3lH0�,
and long vesicles are expected to have a Delaunay shape.
Indeed, the shapes of vesicles we observe at intermediate
stages of the experiment are similar to Delaunay shapes.
Such pearled shapes have already been observed [6], and
the importance of Delaunay shapes for this system has
been discussed in the literature [14,19].

The situation becomes more interesting at late stages of
the experiment when r exceeds the value 1��3lH0�. In
this case, the best Delaunay shape is a chain of identical
spheres of radius 3l and curvature H � 1��3l�. However,
a detailed calculation (to be presented elsewhere) shows
that a configuration consisting of a chain of small spheres
connected by infinitesimal necks to each other and to one
large sphere has the lowest free energy.

The small spheres have polymer density r1 and radius
r1 � 1��r1H0�. The energy of this subsystem vanishes,
since its curvature is H1 � r1H0. The large sphere has
radius r2 and polymer density r2 and plays the role of a
reservoir for the excess volume and polymer molecules.
The ratios r2�r1 and r2�r1 can be calculated numerically
as functions of the average polymer density, the area of
the system, and its volume. For the values of the model
parameters discussed above we obtained r2�r1 . 10 and
r2�r1 , 0.3. This ratio of the radii is consistent with
the experimental configurations seen at long times, where
chains of very small spheres coexist with few very large
spheres, all connected by narrow necks (see Fig. 1d).

The strong inhomogeneity in polymer concentration pre-
dicted by the theory is particularly interesting because it
may show a qualitative difference between predictions of
the local SC model and those of ADE models. The lat-
ter does not differentiate between polymer molecules and
lipids; i.e., exchanging polymers with a larger number of
lipids of the same total area does not change the energy.
One can always use such exchanges to turn an inhomo-
geneous polymer distribution into a homogeneous one of
higher entropy without changing the energy of the vesi-
cle. Hence, ADE models predict a homogeneous polymer
distribution. In the local SC model, inhomogeneities in
polymer distribution induce the same undesirable decrease
in the entropy of mixing. However, inhomogeneities lower
the energy, and our calculations show that for reasonable
parameter values the reduction in energy does lead to siz-
able inhomogeneities. We intend to measure the polymer
concentration on the membrane to test this interesting theo-
retical prediction.
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