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We introduce a new spin-fermion mapping, for arbitrary spin S generating the SU�2� group algebra,
that constitutes a natural generalization of the Jordan-Wigner transformation for S � 1

2 . The mapping,
valid for regular lattices in any spatial dimension d, serves to unravel hidden symmetries. We illustrate
the power of the transformation by finding exact solutions to lattice models previously unsolved by
standard techniques. We also show the existence of the Haldane gap in S � 1 bilinear nearest-neighbor
Heisenberg spin chains and discuss the relevance of the mapping to models of strongly correlated elec-
trons. Moreover, we present a general spin-anyon mapping for the case d # 2.
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Introduction.—Theories of magnetism in normal mat-
ter are direct manifestations of quantum mechanics. The
vast majority of phenomena occurring in magnets, such
as different types of magnetically ordered states, are
often simply described by interacting quantum spins [1].
Although quantum spins do not behave as either pure
boson or fermion operators, different representations have
invoked such particle statistics, for example, the Holstein-
Primakoff, Schwinger, and Dyson-Maleev boson repre-
sentations for arbitrary spin S, or the Jordan-Wigner (JW)
and Majorana fermion representations for spin S � 1

2
magnets.

It is convenient to reformulate a difficult strongly corre-
lated problem in a way that it becomes more manageable;
in some cases there is an exact dualism. This is the idea
behind the bosonization techniques and the different al-
gebra representations of a physical problem. The point
is that these different representations help us understand
various aspects of the same problem by transforming in-
tricate interaction terms into simpler ones. Often, funda-
mental symmetries which are hidden in one representation
are manifest in the other and, moreover, problems which
seem untractable can even be exactly solved after the map-
ping. The simplest and perhaps most popular example is
the equivalence between the Heisenberg-Ising S � 1

2 XXZ
chain and a model of interacting spinless fermions through
the JW transformation [2].

The JW transformation involves the S � 1
2 irreducible

representation of the Lie group SU�2�. Here we generalize
this spin-fermion mapping to any irreducible representa-
tion of dimension 2S 1 1. The three generators S

m
j �m �

x, y, z� of the Lie group for each lattice site j satisfy the
equal-time commutation relations [3]

�Sm
j , Sn

k � � idjkemnlSl
j , (1)

with e the totally antisymmetric Levi-Civita symbol. The
algebra generated by the (linear and Hermitian operators)
S

m
j is the enveloping algebra of the group SU�2�. In terms
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of the ladder operators S6
j � Sx

j 6 iS
y
j

�S1
j , S2

j � � 2Sz
j , �Sz

j , S6
j � � 6S6

j ,

�S1
j , S2

j � � 2���S�S 1 1� 2 �Sz
j �2��� .

(2)

We start by analyzing the one-dimensional S � 1 case.
Then, we will show a generalization to arbitrary spin and
spatial dimension d.

S � 1 mapping.—We introduce the following compos-
ite operators f

y
j � c̄

y
j1 1 c̄j1̄, fj � c̄j1 1 c̄

y

j1̄, written in

terms of the Hubbard operators c̄
y
js � c

y
js�1 2 njs̄� and

c̄js � �1 2 njs̄�cjs (s � 1, 21), which form a subalge-
bra of the so-called double graded algebra Spl�1, 2� [4].
[A bar in a subindex means the negative of that number
(e.g., s̄ � 2s).] For spins on a lattice we fermionize
the spins and reproduce the correct spin algebra with the
following transformation:

S1
j

p
2

� �c̄y
j1Kj 1 K

y
j c̄j1̄�,

S2
j

p
2

� �Ky
j c̄j1 1 c̄

y

j1̄Kj� ,

Sz
j � n̄j1 2 n̄j1̄ ,

whose inverse manifests the nonlocal character of the
mapping

f
y
j �

1
p

2
exp

"
ip

X
k,j

�Sz
k�2

#
S1

j ,

fj �
1
p

2
exp

"
2ip

X
k,j

�Sz
k�2

#
S2

j ,

c̄
y
j1 � Sz

j f
y
j , c̄j1 � fjS

z
j ,

c̄
y

j1̄ � 2Sz
j fj , c̄j1̄ � 2f

y
j Sz

j ,

where the string operators Kj � exp�ip
P

k,j n̄k� �Q
k,j

Q
s�1 2 2n̄ks�, and the number operators n̄k �

n̄k1 1 n̄k1̄. These f operators have the remarkable prop-
erty that � f

y
j , fj� � �S1

j , S2
j �, which suggests an analogy
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between spins and “constrained” (C) fermions. To get an
intuitive understanding of this transformation notice that
the Hilbert space of a single spin S � 1 can be mapped
onto the single-site Hilbert space of a two-flavor C fermion
[Sz � 21, 0, 1 maps onto �n̄1, n̄1̄� � �0, 1�, �0, 0�, �1, 0�;
see Fig. 1 for the general case].

Half-odd integer spin chains have a qualitatively dif-
ferent excitation spectrum than integer spin chains. The
Lieb, Schultz, Mattis, and Affleck theorem [5] establishes
that the half-odd integer antiferromagnetic (AF) bilinear
nearest-neighbor (NN) Heisenberg chain is gapless if the
ground state is nondegenerate. The same model with inte-
ger spins is conjectured to display a Haldane gap [6]. To
understand the origin of the Haldane gap we analyze the
form of the 1D S � 1 XXZ Hamiltonian using the above
representation (an overall omitted constant J . 0 deter-
mines the energy scale)

Hxxz �
X
j

Sz
j Sz

j11 1 D�Sx
j Sx

j11 1 S
y
j S

y
j11�

�
X
j

Hz
j 1 Hxx

j . (3)

It is easy to show that the C fermion version of this Ham-
iltonian is a (S � 1

2 ) t-Jz model [7] plus a particle non-
conserving term which breaks the U�1� symmetry

Hxxz �
X
j

�n̄j1 2 n̄j1̄� �n̄j111 2 n̄j111̄�

1 D
X
js

�c̄yjs c̄j11s 1 c̄
y
js c̄

y
j11s̄ 1 H.c.� . (4)

In the isotropic D � 1 limit, Hxxz can be written as
HHeis �

P
j �Cy

j
�SCj� ? �Cy

j11
�SCj11�, where �S is an ir-

FIG. 1. Constrained fermion states per site for integer and
half-odd integer spin S. In both cases there are 2S flavors
and the corresponding 2S 1 1 values of Sz are shown in the
middle column. One degree of freedom is assigned to the fer-
mion vacuum (circle) whose relative position depends upon the
spin character.
reducible matrix representation of S � 1 (3 3 3 matrices)
while C

y
j � �n̄j1, �c̄y

j1 1 c̄
y

j1̄�Kj , n̄j1̄�.
The charge spectrum of the (S � 1

2 ) t-Jz model is gap-
less (8jtj . Jz) but the spin spectrum is gapped due to
the explicitly broken SU�2� symmetry (Luther-Emery liq-
uid) [7]. Therefore, the spectrum of the S � 1 Hamil-
tonian associated with the t-Jz model with t � 2D and
Jz � 4 (which has only spin excitations) is gapless. Hence
the term which explicitly breaks U�1� must be responsible
for the opening of the Haldane gap. We can prove this
by considering the perturbative effect that the interaction
h

P
js �c̄y

js c̄
y
j11s̄ 1 H.c.� has on the t-Jz Hamiltonian. To

linear order in h (.0), HHeis maps onto the (S � 1
2 )

XYZ model with Jx � 2�h 1 1�, Jy � 22�h 2 1�, and
Jz � 21. From exact solution of this model [8], it is
seen that the system is critical only when h � 0 while for
h fi 0 a gap to all excitations opens.

S � 1 integrable models [9].—To illustrate further the
power of our spin-fermion mapping we now present exact
solutions of 1D S � 1 models that have not been discov-
ered by traditional techniques. These models correspond
to the family of bilinear-biquadratic Hamiltonians,

H1�D� �
X
j

Hz
j 1 Hxx

j 1 �Hz
j , Hxx

j �

�
X
j

Hz
j 1 D

X
s

c̄
y
js c̄j11s , (5)

that can be mapped onto a t-Jz model, whose quantum
phase diagram has recently been exactly solved [7].

Another well-studied class of bilinear-biquadratic SU�2�
invariant Hamiltonians is [10]

H2�D� �
X
j

Sj ? Sj11 1 D�Sj ? Sj11�2, (6)

for 21 # D # 1. The pure Heisenberg (D � 0) and va-
lence bond solid models (D � 1

3 ) belong to the Haldane
gapped phase, which extends over the whole interval ex-
cept at the boundaries D � 61 that are quantum critical
points. The case D � 21 is known to be Bethe ansatz
soluble with a unique ground state and gapless. For D � 1
we can map H2�1� onto the supersymmetric (S � 1

2 ) t-J
Hamiltonian plus a NN repulsive interaction

H2�1� � 2
X
js

�c̄y
js c̄j11s 1 H.c.� 1 2

X
j

sj ? sj11

1 2
X
j

µ
1 2 n̄j 1

3
4

n̄jn̄j11

∂
, (7)

where sj represents a S � 1
2 operator. This model is Bethe

ansatz soluble with a gapless phase [11] and is known as
the Lai-Sutherland solution [12].

We now discuss the importance of our generalized JW
transformation in unraveling hidden symmetries of an arbi-
trary spin Hamiltonian. In Eq. (6), for example, the S � 1
SU�2� symmetry is manifest. However, both the S � 1

2
SU�2� and global U�1� gauge symmetries are hidden. On
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the other hand, in the transformed Hamiltonian, Eq. (7),
these two symmetries are manifested explicitly through ro-
tational invariance and charge conservation. The genera-
tors of these symmetries are related through the mapping
already introduced. To illustrate this, we consider the U�1�
symmetry case. Here the generator of the transformation
is Q �

P
j n̄j which maps onto Q �

P
j �Sz

j �2 in the spin
representation. The total group symmetry of the Hamilto-
nian is SU�3�.

Generalized transformation.—A general transfor-
mation for arbitrary spin and spatial dimension is the
following.

Half-odd integer spin S (s [ F1�2 � �2S 1 1, . . . , S�):

S1
j � hS̄ c̄

y

jS̄11Kj 1
X

s[F1�2

sfiS

hs c̄
y
js11c̄js ,

S2
j � hS̄K

y
j c̄jS̄11 1

X
s[F1�2

sfiS

hs c̄
y
js c̄js11 ,

Sz
j � 2S 1

X
s[F1�2

�S 1 s�n̄js ,

c̄
y
js � K

y
j L1�2

s �S1
j �s1SP

1�2
j ,

where P
1�2

j �
Y

t[F1�2

t 2 Sz
j

t 1 S
, L1�2

s �
s21Y

t�2S

h21
t .

Integer spin S (s [ F1 � �2S, . . . , 21, 1, . . . , S�):

S1
j � h0�c̄y

j1Kj 1 K
y
j c̄j1̄� 1

X
s[F1

sfi21,S

hs c̄
y
js11c̄js ,

S2
j � h0�Ky

j c̄j1 1 c̄
y

j1̄Kj� 1
X

s[F1
sfi21,S

hs c̄
y
js c̄js11 ,

Sz
j �

X
s[F1

sn̄js ,

c̄
y
js � K

y
j L1

s

(
�S1

j �sP
1

j if s . 0 ,
�S2

j �sP
1

j if s , 0 ,

where P 1
j �

Y
t[F1

t 2 Sz
j

t
, L1

s �
jsj21Y
t�0

h21
t ,

and hs �
p

�S 2 s� �S 1 s 1 1� (see Fig. 1).
The total number of flavors is Nf � 2S, and the S � 1

2
case simply reduces to the traditional JW transformation.
Since these mappings are exact they preserve the invariant
Casimir operator S2

j � S�S 1 1�. The generalized C fields

c̄
y
js � c

y
js

Y
t[Fa

�1 2 njt�, c̄js �
Y

t[Fa

�1 2 njt�cjs

(8)

form a subalgebra of the generalized Hubbard double
graded algebra, where the “unconstrained” operators
c
y
js , cjs satisfy the standard fermion anticommutation

relations (a � 1
2 , 1 depending upon the spin character of
1084
the representation). These generalized C operators (only
single occupancy is allowed) anticommute for different
sites

�c̄js , c̄ks0� � �c̄y
js , c̄

y
ks0� � 0 ,

�c̄js , c̄
y
ks0� � djk

8><
>:

Q
t[Fa

tfis

�1 2 n̄jt� if s � s0,

c̄
y
js0 c̄js if s fi s0,

(9)

and their number operators satisfy n̄jsn̄js0 � dss0n̄js .
The string operators Kj introduce nonlinear and non-

local interactions between the C fermions. For 1D lattices
(Kj � K

y
j , �Ki , Kj� � 0) they are the so-called kink op-

erators Kj � exp�ip
P

k,j n̄k�, while for 2D [13]

Kj � exp

"
i
X
k

a�k, j�n̄k

#
, (10)

with n̄k �
X

s[Fa

n̄ks � 1 2 P a
k . (11)

Here a�k, j� is the angle between the spatial vector k 2 j
and a fixed direction on the lattice, and a� j, j� is defined to
be zero. We comment that the 1D kink operators constitute
a particular case of Eq. (10) with a�k, j� � p when k , j
and equals zero otherwise. For d . 2, the string operators
generalize [9] along the lines introduced in Ref. [14].

There is always the freedom to perform rotations in
spin space to get equivalent representations to the one pre-
sented above. However, for bilinear isotropic NN Heisen-
berg [spin SU�2� rotationally invariant] Hamiltonians in the
large-S limit there is a fundamental difference between ef-
fective integer and half-odd integer spin cases. In the latter
case a new local U�1� gauge symmetry emerges that is ex-
plicitly broken in the integer case. For 1D lattices, this is
precisely what distinguishes Haldane gap systems [6] from
half-odd integer spin chains that are critical.

We mention that other fermionic representations are fea-
sible. In particular, for half-odd integer cases where 2S 1

1 �
PN̄f

i�0 � N̄f

i � � 2N̄f (e.g., S � 3
2 with N̄f � 2) a simple

transformation in terms of canonical fermions is possible
[9]. For these mappings the string operators must be modi-
fied to take into account the double occupancy of a site. In
this way the Hubbard model can be mapped onto a S � 3

2
spin Hamiltonian [9].

2D Lattices and spin-anyon mapping.—The generaliza-
tion of these transformations to higher dimensions gives
new exact mappings between spin theories and C fermion
systems in the presence of gauge fields. To illustrate this
we write the S � 1 Hamiltonian H2�1� in the fermion rep-
resentation for d � 2

H2�1� � 2
X
js,n

�c̄y
j1ense2iAn�j�c̄js 1 H.c.�

1 2
X
j,n

sj ? sj1en

1
X
j,n

µ
2 2 �n̄j 1 n̄j1en

� 1
3
2

n̄jn̄j1en

∂
, (12)
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and An�j� �
P

k �a�k, j� 2 a�k, j 1 en��n̄k, where en

(n � 1, 2) are basis vectors of the Bravais lattice connect-
ing NN and j’s represent sites of the corresponding 2D
lattice. We note that the field An�j� is associated with the
change in particle statistics. It is well known [4,13] that the
same transmutation of particle statistics can be achieved
via a path-integral formulation for H2�1� where an Abelian
lattice Chern-Simons term is included. In this formulation
a constraint (Gauss’s law) requiring that the gauge flux
through a plaquette j be proportional to the total fermion
density on the site, n̄j, is enforced. This suggests that our
spin-fermion mapping can be generalized to a spin-anyon
transformation with a hard-core condition for the anyon
fields [9]. In fact, one can formally take our generalized
JW transformation and replace the string operators Kj by
the statistical operators Kj�u� � exp�iu

P
k a�k, j�n̄k�
with 0 # u # 1. With this choice, the c̄ operators satisfy
equal-time anyon commutation relations [u � 1�0� corre-
sponds to C fermions (bosons)] [9]. Similar ideas apply
for 1D lattices.

One immediately sees the relevance of these transforma-
tions for the theories of magnetism and high-temperature
superconductivity: A class of S � 1 Hamiltonians that
can be mapped onto a lattice-gauge (Chern-Simons) S � 1

2
t-J theory and vice versa, for example, a S � 1

2 t-J model,

Ht2J � 2t
X
js,n

�c̄y
js c̄j1ens 1 H.c.� 1 J

X
j,n

sj ? sj1en

2 m
X
j

n̄j , (13)

can be exactly mapped onto a lattice-gauge bilinear-
biquadratic S � 1 theory
Ht2J � 2m
X
j

�Sz
j �2 1

J
8

X
j,n

∑
Hz

jn 2
4t
J

S1
j eiAn�j�S2

j1en
2

4t
J

�Hz
jn , S1

j eiAn�j�S2
j1en

� 1 �S1
j S2

j1en
�2 1 H.c.

∏
. (14)
By means of a semiclassical approximation it has been
shown [15] that the ground state of H2�1� is on the bound-
ary between AF (D , 1) and orthogonal nematic (nonuni-
form, D . 1) phases [10,15]. These two states are the
result of the competition between the quadratic and quar-
tic spin-exchange interactions. In terms of the equivalent
t-J gauge theory this translates into a competition between
antiferromagnetism and delocalization. Qualitatively, the
string path of the particle moving in an AF background
gives rise to a linear confining potential since the number
of frustrated magnetic links is proportional to the length
of the path. This observation suggests that the inhomoge-
neous phases observed in the “striped” high-Tc compounds
can be driven by the competition between magnetism and
delocalization.

Summary.—We introduced a general spin-fermion map-
ping for arbitrary spin S and spatial dimension that natu-
rally generalizes the Jordan-Wigner transformation for
S � 1

2 . Mathematically, we established a one-to-one map-
ping of elements of a Lie algebra onto elements of a
fermionic algebra with a hard-core constraint. Several
generalizations, like a spin-anyon mapping, and important
consequences result from these transformations [9]. For
instance, the well-known transformation between S � 1

2
and hard-core bosons in any dimension [16] is a particular
case of our general mappings. Incidentally, we note
that there are extremely powerful numerical techniques
(cluster algorithms [17]) to study quantum spin systems,
and our mapping allows one to extend these methods to
study the equivalent fermionic problems.
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