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Hofstadter Butterfly and Integer Quantum Hall Effect in Three Dimensions
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For a three-dimensional (3D) lattice in magnetic fields we have shown that the hopping along the third
direction, which normally smears out the Landau quantization gaps, can rather give rise to a Hofstadter’s
butterfly specific to 3D when a criterion is fulfilled by anisotropic (quasi-one-dimensional) systems. In
3D the angle of the magnetic field plays the role of the field intensity in 2D, so that the butterfly can
occur in much smaller fields. We have also calculated the Hall conductivity in terms of the topological
invariant in the Kohmoto-Halperin-Wu formula, and each of sxy , szx is found to be quantized.
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Among the effects of magnetic fields on electronic
states, one of the most bizarre is Hofstadter’s butterfly
[1]. Namely, when a two-dimensional (2D) periodic
system is put in a magnetic field, gaps not only appears
between the Landau levels, but a series of gaps appears
in a self-similar, fractal fashion against the magnetic flux
f, penetrating a unit cell in units of the flux quantum
f0 � h�e. From its derivation the butterfly is conceived
to be specific to 2D.

Here we raise a question: can we have something like
Hofstadter’s butterfly in spite of, or even because of, a
three-dimensionality (3D)? This may at first seem quite
unlikely since a motion along the third direction (z) should
wash out the butterfly gaps as well as Landau level gaps.
Several authors have extended Hofstadter’s problem to 3D
in the last decade [2,3], and subbands are indeed shown to
overlap or touch with each other.

Here we have found that an analog of Hofstadter’s but-
terfly does indeed exist, which is, intriguingly, not a rem-
nant of a 2D butterfly but specific to 3D, appearing under a
certain condition that is fulfilled by anisotropic (quasi-1D)
systems. The problem is solved by formally mapping the
3D Schrödinger’s equation to 2D. The mapping indicates
that the ratio of the magnetic fluxes penetrating two facets
of the 3D unit cell plays the role of the magnetic flux in
2D, so that the 3D butterfly appears on the energy versus
tilting angle of the magnetic field.

Once we have a butterfly, we can immediately ask our-
selves how the integer quantum Hall effect should look on
the butterfly. If one examines a theoretical reasoning from
which the quantization in the Hall conductivity is deduced
in the usual quantum Hall system, an essence is the pres-
ence of a gap in the energy spectrum. This was already
indicated in a gauge argument by Laughlin [4] and elabo-
rated by Thouless et al. [5] for periodic systems. There the
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quantized Hall conductivity for the Fermi energy EF lying
in a butterfly gap is identified to be a topological invariant.

For 3D Kohmoto, Halperin, and Wu have shown, fol-
lowing the line of the 2D work, that if there is an energy
gap in a 3D system, then an integer quantum Hall effect
should result when EF lies in a gap [6,7]. Montambaux
and Kohmoto have calculated the Hall conductivity in a
case where a third-direction hopping opens some gaps [8].

Since the 3D butterfly found here has a recursive struc-
ture we question the systematics of the quantum Hall
effect. The 2D-3D mapping evoked to derive the 3D but-
terfly indeed enables us to calculate the Hall topological
invariants for the 3D butterfly. We have found that each of
sxy , szx is quantized in 3D.

Our model is one of noninteracting tight-binding elec-
trons in a uniform magnetic field B described by the
Hamiltonian

H �
X

�i,j�
�tijeiuij c

y
i cj 1 H.c.� , (1)

in standard notations, where the summation is over nearest-
neighbor sites with tij � tx , ty , tz along x, y, z, respec-
tively, and uij � �e�h̄�

Rj
i A ? dl is the Peierls phase. Let

us first recapitulate the 2D butterfly. In 2D with the Lan-
dau gauge A � �0,Bx�, y is a cyclic coordinate, so that
the wave function becomes clm � einymFl , where �l,m�
labels �x, y� coordinates, and ny is the Bloch wave number
along y. The Schrödinger equation then takes a form of
Harper’s equation,

2tx�Fl21 1 Fl11� 2 2ty cos�2pfl 1 ny�Fl � EFl ,

(2)

where f � Bab�f0 is the number of flux quanta penetrat-
ing a unit cell � a 3 b. The energy spectrum becomes a
© 2001 The American Physical Society
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butterfly for the ordinary isotropic case, tx � ty , while we
note for later reference that the gaps are rapidly smeared
out as the anisotropy is introduced, ty�tx ! 0, because the
cosine potential weakens. Since tx and ty enter on an equal
footing, the 2D butterfly appears when tx � ty .

Harper’s equation in 3D can be derived in a similar
way. For simplicity we consider a simple cubic lattice
in a magnetic field B � �0,B sinu,B cosu� assumed to
be on the yz plane [9]. The vector potential is then
A � �0,Bx cosu, 2Bx sinu�, so that y, z are cyclic
coordinates and the wave function becomes clmn �
einym1inznFl , where �l,m, n� labels �x, y, z�. The
Schrödinger equation is

2tx�Fl21 1Fl11� 2 �2ty cos�2pfzl 1 ny�

1 2tz cos�22pfyl1 nz��Fl �EFl ,

(3)

where two periodic potentials are superposed. Here
fy�fz� is the number of flux quanta penetrating the side
of a unit cell (� a 3 b 3 c) normal to y�z� [inset of
Fig. 3(a)].

Although the spectrum in 3D does not usually have
many gaps (aside from the trivial Bragg-reflection gaps),
we find that a butterflylike structure does emerge for cer-
tain choices of �tx , ty , tz�, as typically displayed in Fig. 1(a)
for �tx , ty , tz� � �1, 0.1, 0.1�, a quasi-1D system. The spec-
trum is plotted against the angle u of a magnetic field
�fy, fz� � 0.2�sinu, cosu� with b � c assumed here. A
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FIG. 1. The energy spectrum of a 3D system with
tx :ty :tz � 1:0.1:0.1 (a) or a 2D system with tx :ty :tz � 1:0.1:0
(b), plotted against the angle u in a magnetic field
�fy, fz� � 0.2�sinu, cosu�.
structure akin to the 2D butterfly is seen in the bottom (or
at the top) of the whole spectrum.

One might consider this as a 2D butterfly surviving the
third-direction hopping, but this is wrong as is evident from
Fig. 1(b), where we turn off tz to find that the spectrum
coalesces to a series of broadened Landau levels. So we
are talking about the butterfly specific to 3D rather than a
remnant of a 2D counterpart.

We first explore the mechanism why the butter-
fly appears in 3D. For the periodic potentials in the
3D Harper equation, V �1��l� ~ ty cos�2pfzl 1 ny�
and V �2��l� ~ tz cos�22pfyl 1 nz�, we assume that
their periods are much greater than the lattice constant
(fz, fy ø 1). We also assume that tyfz ¿ tzfy, i.e.,
local peaks and dips of the total potential V �1� 1 V �2� are
primarily those of V �1�.

Then the potential wells of V �1�, with a spacing 1�fz,
feel the slowly varying V �2�, and, since each well contains
many original sites due to the assumption, we can talk
about bound states of the well in the effective-mass sense.
If wells are deep enough, several bound states appear per
well and each state forms a tight-binding band (i.e., Landau
band), and the equation (3) reduces to

2t0�Jl021 1 Jl011� 2 2tz cos�22p�fy�fz�l0

1 �fy�fz�ny 1 nz�Jl0 �EJl0 .

(4)

Here t0 is the transfer integral between neighboring bound
states, l0 labels the well, Jl0 the wave function, and the
cosine term represents V �2� at each minimum of V �1�. The
reduced equation has exactly the same form as that in 2D,
Eq. (2), if we translate

3D:�tx , ty , tz , fy, fz� ! 2D:�t0, tz , fy�fz� . (5)

Since the butterfly is a hallmark of an isotropic 2D case,
one can predict that the spectrum in 3D should exhibit a
butterfly when t0 � tz . So a finite tz is indispensable, and
the butterfly is in fact washed out for tz � 0.

We can estimate t0 (when there is V �1� alone) by convert-
ing Harper’s equation to a differential equation for a con-
tinuous variable l̃ 	 2pfzl in the effective-mass sense,
which turns out to contain a combination ty�f2

z only (with
tx � 1, a unit of energy). Since t0 is a matrix element of
V �1� ~ ty , we have a simple scaling law,

t0 � 2tyf�ty�f2
z � . (6)

The value of t0 differs from one Landau band to another,
where middle bands, with weaker binding, have larger t0.

We have numerically calculated t0�ty , fz� for the lowest
band. This, combined with the scaling, is shown in Fig. 2.
If we plug in the condition for the butterfly, tz 
 t0, the plot
may be regarded as indicating how to adjust fz to have a
butterfly for given �ty , tz�. We can see that the butterfly is
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FIG. 2. The effective transfer t0�ty , fz� for the lowest Landau
band in units where tx � 1. By plugging t0 
 tz , the plot serves
to identify appropriate values of fz to realize the butterfly for
given �ty , tz�.

restricted to the case with ty , tz ø 1�� tx�, i.e., quasi-1D
systems [10]. In other words, we cannot satisfy fz ø 1
when ty , tz � 1.

The plot also shows that the example above, �tx , ty , tz� �
�1, 0.1, 0.1�, fz � 0.2, is indeed a right choice with t0 �
0.05 � tz�� 0.1�. The butterfly is symmetric in this ex-
ample, which is an accident for ty � tz: in Harper’s equa-
tion V �1� and V �2� exchange roles at u � 45± for ty � tz .
Around tyfz � tzfy, the argument in terms of the wells
breaks down but a clear structure remains. This is because,
although V �1� 1 V �2� then exhibits a beat so that the bar-
rier height separating the wells (hence t0) varies from place
to place, a change in the barrier height changes t0 only
slightly, since t0 has a broad peak against ty as seen in
Fig. 2.

Would the 3D butterfly be experimentally realizable
[11]? In principle, Fig. 2 shows that there exists appro-
priate �ty , tz� no matter how small fz may be, while the
2D butterfly requires f � O�1� [12]. So, for a given lat-
tice constant, the butterfly is more easily realized in 3D.
In practice, �ty , tz� become smaller as fz decreases, and
the energy scale [width of the Landau band 4�t0 1 tz�
with t0 � tz] shrinks when fz ! 0, so that it will be-
come harder to resolve the butterfly structure. For typical
quasi-1D organic conductors such as �TMTSF�2X we have
tx :ty:tz � 1:0.1:0.01 with a, b, c � 10 Å, and we can esti-
mate the required fz � 0.1, an order of magnitude smaller
than fz � 1, and the energy scale 4�t0 1 tz� � 20 meV.
fz � 0.1 corresponds to B � 400 T, which is large but
around the border of experimental feasibility [13].

To be more precise there are further restrictions on
�ty , tz� to have butterflies. Binding of a well must be so
strong that the transfer to second neighbors is negligible,
which is shown to require

p
ty . fz. Also, different

Landau bands should not be mixed, which requires
tz , fz

p
ty . Although all these conditions can be inter-

preted in the semiclassical quantization involving the cross
sections of equipotential surfaces, the essential factor is,
as seen, the hopping t0 between adjacent cross-sectional
orbits, which is outside the scope of the semiclassical
quantization.
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Now we come to our final goal of calculating the Hall
conductivity for the 3D butterfly. The mapping used to
derive the 3D butterfly enables us to accomplish this if
we identify the topological invariants. In the Kohmoto-
Halperin-Wu formula the Hall conductivity tensor is ex-
pressed as

sij � 2
e2

2ph

X

k

eijkGk (7)

when EF is in a gap. Here eijk is the unit antisymmetric
tensor, G � m1a� 1 m2b� 1 m3c� with a�,b�,c� being
the primitive reciprocal lattice vectors, and m1, m2, m3 are
topological invariants specifying each gap. For an orthog-
onal lattice we have simply syz � 2

e2

h
m1

a , szx � 2
e2

h
m2

b ,

and sxy � 2
e2

h
m3

c .
The invariant integers are subject to a Diophantine

equation,

r
Q

� l 1
P
Q
nxm1 1

P
Q
nym2 1

P
Q
nzm3 , (8)

where we have assumed a rational magnetic flux,
�fx, fy, fz� �

P
Q �nx , ny , nz� (P,Q: integers, nx , ny , nz

have no common divisors), with r the number of occupied
bands and l another topological invariant. Although
the solution of the equation is not unique, Thouless
et al. [5] argued for 2D that there is a restriction on
the integers that makes the solution unique. In analogy
with this Kohmoto et al. [7] conjecture the unique-
ness of the solution in 3D, where the restriction reads
jm1nx 1 m2ny 1 m3nzj , Q�2.

We can then calculate the Hall conductivity for the 3D
butterfly. We assume fx � 0 and tyfz ¿ tzfy, for which
the effective flux in Eq. (4) is f � fy�fz � ny�nz , so
each Landau band should split into nz butterfly subbands.
Consider EF lying just above the mth subband in the lth
Landau band from the bottom [i.e., �lnz 1 m� subbands
altogether]. Each subband is shown to comprise P bands,
so that the gap has an index r � �lnz 1 m�P. When we
substitute this in the Diophantine equation (8), we note
that, since P and Q have no common divisors, l must be
a multiple of P; with the above restriction one has l � 0,
and we end up with lnz 1 m � nym2 1 nzm3 for the 3D
butterfly in the lower half of the entire band. From this we
can determine m2, m3 for every gap in the 3D butterfly, as
explicitly displayed in Fig. 3(a).

If we compare this with a corresponding plot for 2D in
Fig. 3(b), we recognize a consequence of the 2D-3D map-
ping as a beautiful one-to-one correspondence between the
Hall conductivities on 2D and 3D butterflies as a whole
(i.e., for a set of topological invariants attached to the re-
cursive gaps). Namely, the Hall conductivity in 2D [5] is
given by s2D � 2

e2

h t, where t is an integer in a 2D Dio-
phantine equation r � qs 1 pt. If we compare this with
the 3D Diophantine equation, the mapping dictates a corre-
spondence ny $ p,nz $ q,m $ r , so that the invariant
integers should translate (inset of Fig. 3) as
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FIG. 3. (a) The conductivity �sxy , szx� � 2e2�h�m3, m2� is
plotted on a 3D butterfly, where we display the topological
invariants �m3, m2� for each gap. (b) The corresponding
plot for s2D � 2�e2�h�t on the 2D butterfly. The area
enclosed by a dashed line in (a) corresponds to the 2D
butterfly. m2 in (a) corresponds to t in (b), while m3 in
(a) to s in Eq. (9).

sxy 2 l √! s, szx √! s2D . (9)

The discussions so far are for clean systems. We know
that localization of electrons is necessary for the quantum
Hall plateaus. In 2D, almost all the states are localized so
that the Hall conductivity as a function of the electron con-
centration becomes step functions in the thermodynamic
limit at T � 0. In 3D, there should be mobility edges, and
plateaus will be formed between mobility edges. It is an
interesting problem to study how the mobility edges ap-
pear in the 3D butterfly, which would require an entirely
separate work. Even in 2D the step-function plateaus are
smeared for a finite system size or a finite inelastic scatter-
ing length. For the usual 2D butterfly, a numerical study
for a finite system [14] shows that we still have a non-
monotonic behavior as a sign for the butterfly when the
disorder is not too strong, so we expect a similar behavior
in the disordered 3D butterfly as well.
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