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Phase Transitions in Liquid 3He
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The phase transitions of liquid 3He are described by truncations of an exact nonperturbative renormal-
ization group equation. The location of the first-order transition lines and the jump in the order parameter
are computed quantitatively. At the triple point we find indications of partially universal behavior. We
suggest experiments that could help to determine the effective interactions between fermion pairs.
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The low temperature phase transitions and the super-
fluid phases of liquid 3He [1] can be described [2] by a
field theory for complex 3 3 32 matrices A representing
fermion pairs. An approximation based on quartic poly-
nomials in A, including the renormalization group running
of the coupling constants [3], can account for the rough
phase structure but not for details of the transitions. We
will be concerned with the transitions from the normal
liquid to superfluidity in vanishing external magnetic field.
In a mean-field treatment those transitions are of second
order, whereas early renormalization-group calculations
[3] found hints for them to be fluctuation-induced first-
order transitions. The Bardeen-Cooper-Schrieffer weak-
coupling theory estimates the critical region where
fluctuations invalidate the mean-field approximation to ex-
tend over a temperature interval �T � 1028 K. Based on
experiments on zero sound absorption [4] it has been con-
jectured, however, that the critical region might be up to a
thousand times larger [3]. The theoretical answers there-
fore hinge on two problems: first, the “microphysical”
effective interactions at the scale of an effective bosonic
theory for fermion pairs (we assume L21 � 120 Å)
are poorly known and, second, the transition from the
microphysical interactions to the macrophysics of the
phase transitions (i.e., the thermodynamic potentials) is
very complex. Only if the second problem can be solved
can the experimental observations of the macrophysics
(phase structure, jump in the order parameter, etc.) be
used to constrain the microphysical interactions. In this
Letter we propose a quantitatively reliable mapping of the
microphysics onto the properties of the free energy den-
sity. This is effected by means of extended truncations to
an exact nonperturbative renormalization group equation
[5], in contrast to fourth-order polynomial approximations
used earlier [6,7]. A closer examination of the polynomial
approximation to sixth order shows that it does not lead to
a convergent and reliable description of the phase diagram.

The different phases of 3He are characterized [8]
by expectation values �A� (order parameters) in differ-
ent directions: the Balian-Werthamer state, A1 � 1,

the Anderson-Brinkman-Morel state, A2 �
q

3
8 �l7 1

il6 1 l4 2 il5�, and the planar state, A3 �
q

3
2 il2
0031-9007�01�86(6)�1034(4)$15.00
represent the phases of the mean-field diagram. The
li are the Gell-Mann matrices. Additionally, we

examine the direction A4 �
q

3
4 �l3 2 il1�. Here, �A�

corresponds to the minimum of the effective potentialU�A�
for spatially homogeneous fields. Our main aim is there-
fore the computation of U�A� for a given microscopic
effective action (at the scale L) for which we assume the
conventional form [2]

GL �
Z

d3x

(
Tr �=Ay �=A 1 mr 1

4X
i�0

biIi 1 aKD

)
(1)

with r � TrAyA and Ii the invariants to fourth order
allowed by the symmetry group G � SO�3� 3 SO�3� 3

U�1�: I0 � r2, I1 � jTrATAj2, I2 � Tr�ATA� �ATA��,
I3 � Tr�AyA�2, and I4 � Tr�AyA� �AyA��. We include
the dipole interaction

KD � TrAyTrA 1 Tr�A�A� (2)

as a symmetry breaking perturbation arising from the spin-
orbit coupling of the atoms in a Cooper pair and neglect
the strain gradient terms [2]. All quantities are in units
of a characteristic critical temperature Tc � 2.6 mK, and
m�T � � m�Tc� 1

T2Tc
Tc 1 · · · reflects the temperature de-

pendence. In the paramagnon theory the quartic couplings
bi are given by [3]

b0 � c�2 1 0.2d�, b1 � 2c�1 1 0.1d� ,

b2 � c�2 2 0.05d� , b3 � c�2 2 0.55d� ,

b4 � 2c�2 1 0.7d� (3)

with c � 0.001 and d parametrizing the pressure depen-
dence. We study a pressure regime of 22 , d , 1.8. For
d . 1.9 the microscopic potential becomes unbounded
from below. This will be compared to a calculation where
the couplings are 10 times as strong.

Our approach is based on the effective average action
Gk�A�x�� which interpolates between the microphysics
�k � L� and the macrophysics �k � 0� by means of an
exact flow equation [5]. We truncate the most general
functional dependence on A�x� in lowest order of a
derivative expansion with nonzero anomalous dimen-
sion [9],
© 2001 The American Physical Society
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Gk �
Z

d3x 	ZkTr �=Ay �=A 1 Uk�A� 1 akKD
 . (4)

Here Uk�A� is a function of the 18 real fields wy in A. It
respects the symmetry group G. We can compute the ef-
fective potential U�A� � U0�A� by a numerical integration
of the flow equation [5]

≠tUk�A� �
1
2

Z d3q
�2p�3 ≠tRk

3 Tr��Zkq2 1 Rk� 1 M2
k �A��21. (5)

Here, t � lnk. Our choice of the infrared cutoff,

Rk�q� � Zkq
2�eq

2�k2

2 1�21, (6)

makes the flow equation ultraviolet and infrared finite.
We need the mass matrix of the second derivatives of U,
M2
y,z � ≠2U

≠wy≠wz
. The flow equation for the wave function

renormalization Zk can be found in [9]. We evaluate it at
the minimum of the potential.

In a first investigation we used a sixth-order polynomial
approximation for Uk and searched for minima in all the
15 directions with different residual symmetries given in
[8]. In this scheme we found a phase transition in the
direction A4 for large d. A detailed investigation of a
general form of the potential shows, however, that this
transition is an artifact of the polynomial approximation.
We conclude that polynomial approximations do not allow
reliable statements about the phase diagram. Instead, we
deal with an arbitrary dependence of Uk on the field in
the four given directions, A � jAn, for which we write
Uk�jAn� � V

�n�
k �r� with r � 3j2. We assume that the

directions n include the absolute minimum of Uk . We get
the flow equation for V

�n�
k by evaluating (5) at points on the

line jAn. To do so, we need to know the second derivatives
of Uk with respect to all fields, however. That is why we
include in our truncation four coupling functions b

�n�
i �r�

multiplying all fourth-order invariants other than r2:

U�jAn 1 e� �

Ω
V �n��r� 1

4X
i�1

b
�n�
i �r�

3 �Ii 2 f
�n�
i r2�

æ Ç
jAn1e

. (7)

The numbers f
�n�
i are chosen such that the invariants Ii 2

f
�n�
i r2 do not contribute on the line jAn. Here e denotes

fields orthogonal to jAn and we expect that this trunca-
tion gives a good approximation to the true potential in a
neighborhood of the line jAn.

The flow equations of the coupling functions b
�n�
i �r�

are derived by forming appropriate linear combinations of
second and fourth derivatives of (5) with respect to certain
fields. We have computed these flow equations for the four
field directions An. The resulting equations are very long,
altogether about 4000 lines. They all derive, however,
from compact expressions, namely, field derivatives of (5),
which can be evaluated by a computer. We consider this
structural simplicity to be one of the major strengths of
our formalism.

We have integrated the resulting equations numerically
by laying the potentials and coupling functions on grids
of ten points each. In a first run, we detected truncation
errors in the quantities ≠V �n�

≠r jA�0. They originate in an
insufficient treatment of the symmetry constraints. We
fight this problem in two steps. First, we infer the first
potential derivatives at the origin from the term mr and
integrate a separate flow equation for m. Second, for the
higher orders we employ for small jtj a mixed truncation
of the form

U�jAn 1 e� �

(
mr 1

4X
i�0

biIi 1

10X
j�0

cjJj 1 r4w�n��r�

1

4X
i�1

r2B
�n�
i �r� �Ii 2 f

�n�
i r2�

) É
jAn1e

.

(8)

Here Jj are the 11 invariants of sixth order, and w�n�

and B
�n�
i describe the deviation from a sixth-order poly-

nomial approximation. The symmetry is manifestly re-
spected up to sixth order. We have estimated the accuracy
of the sixth-order polynomial approximation by calculat-
ing ≠tU�jAn� to fourth and sixth order in j in two ways:
from the flow of the couplings in the polynomial part of
truncation (8) and directly by Eq. (5). The discrepancy
stays smaller than 20% as long as the flow parameter jtj
is not too big, t . 25. It grows to a few hundred percent,
however, until the phase transition occurs at t � 28. This
is due to terms of eighth and higher order that are trun-
cated in the flow equations for the couplings bi and cj in
(8). Again we observe, now on a more technical level, that
a polynomial truncation of the free energy to realistic order
does not permit any conclusive statements about the phase
diagram. As soon as the errors exceed 20%, we switch to
the truncation (7). To summarize, the computation of the
thermodynamic potential U0 for a microscopic action GL

contains two possible sources of errors. First, it has been
argued that the errors from the truncation (4) are governed
by the size of the anomalous dimension [9] which is only
a few percent in our case. Second, inaccuracies arise from
the numerical solution of Eq. (5). We estimate the error in
the quantities ≠tV �n� at the potential minima by comparing
truncation (7) with an alternative truncation in which we
extract the orthogonal masses from the polynomial trunca-
tion in the origin. We find this error to be no bigger than
a few percent. Also the errors induced by the inaccura-
cies of ≠V �n�

≠r jA�0 are of this order of magnitude. Finally,
we find no indication that our results depend on the pre-
cise choice of the cutoff function Rk in any important way.
Our approximations should therefore allow us to compute
the phase structure reliably.

We now study the case of large couplings, c � 0.01.
We neglect the spin-orbit coupling, which is justified in
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FIG. 1. Phase diagram of the effective theory for liquid 3He
with strong coupling �c � 0.01�. The temperature scale is set
by �T � 1026 K. The same picture is found for c � 0.001,
neglecting the spin-orbit interaction. Then �T � 1028 K.

this case, the other masses being much bigger. By com-
puting the temperature dependence of the renormaliza-
tion of the fourth-order couplings, we find a width of the
critical region of about 1026 K, in good agreement with
the Ginzburg criterion. The resulting phase diagram is
shown in Fig. 1. In a pressure regime of 0.26 , d , 0.46
a beak of A-phase between the symmetric and the B-phase
is stabilized by the fluctuations of the order parameter. In
the middle of this pressure interval the temperature width
of this wedge is about 1026 K. Towards the upper end it
rises, however, to 1025 K at d � 0.41. All transitions are
first order.

Figure 2 shows the pressure dependence of the corre-
lation length, given by the inverse of the renormalized
mass at the potential minimum, and the discontinuity of
the NMR frequency shift at the phase transition. The lat-
ter quantity is related to the jump in the order parameter
squared �r by

��n�2 � 6c 3 1010 Hz 3 �r (9)

which follows from the mean-field temperature depen-
dence of �n given in [2]. We observe a substantial
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FIG. 2. Pressure dependence of the correlation length at the
phase transition (in mm, circles) and the discontinuity in the
NMR frequency shift (in kHz, squares); c � 0.01.
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FIG. 3. Flow of the dimensionless renormalized fourth-order
couplings near the triple point (c � 0.001, d � 0.27, m �
0.004, no spin-orbit coupling).

increase of the correlation length as we approach the triple
point d � 0.26. This observation nourishes speculations
about a fixed point in the vicinity of this point in parameter
space which would give rise to universal behavior of the
system. Accurate predictions could then be made despite
the uncertainty of our knowledge of the microscopic the-
ory. Also an examination of the flow of the couplings at
the origin looks interesting near the triple point. We ob-
serve strong renormalization of the renormalized fourth-
order couplings bir (Fig. 3).

For example, b4L
�b40 � 8 (the bik are the unrenormal-

ized, dimensionful couplings at scale k), whereas analo-
gous ratios away from the triple point, say, at d � 0, grow
no larger than 1.5 at the phase transition. Even though
we do not find a true fixed point behavior the ratios of
certain couplings seem to tend to constant values, such as
b1r�b4r � 1, corresponding to a partial fixed point.

The qualitative features for smaller couplings
c � 0.001 look similar, with correspondingly smaller
�T � 1028 K. In this case, however, the dipole term
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FIG. 4. Phase diagram of the effective theory for liquid 3He in
the parameter range suggested by the paramagnon model close
to the transition line. The temperature width of the planar phase
is about 1029 K.
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FIG. 5. Potential Ukf in the planar direction at the phase tran-

sition. We show the dependence on j �
q

r

3
.

should be included �aL � 2 3 1026� which we do
next. Figure 4 shows the phase diagram with first-order
transition lines, similar to [2]. The width of the stripe of
planar phase stabilized by the dipole interaction is about
2 3 1029 K as expected from mean-field considerations.
Farther away from the transition to the symmetric phase
the effect of the dipole term can be neglected, giving rise
to the structure depicted in Fig. 1.

By tuning the temperature to the transition from the sym-
metric to the planar phase, we find a potential Ukf (Fig. 5)
which shows clearly that the transition is of first order.
(Fluctuations with momenta smaller than kf make the po-
tential convex without much influence on the equation of
state [10].)

From Fig. 5 we can easily infer the order parameter
jump: �r � 8 3 1025. This turns out to be almost inde-
pendent of the pressure in the regime examined by us. It
corresponds to a discontinuity in the NMR frequency shift
at the transition of about 50 Hz. It was suggested in [2]
that this should be experimentally observable.

Let us finally ask how experiments may constrain the
size of the couplings. We have seen that large couplings
lead to a widening of the critical region �T . It should
be possible to exploit this fact by measuring the width
of the critical region. Varying the temperature at a pres-
sure right under the triple point, one should be able to
observe two distinct phase transitions. The width of the
intermediate phase relates to the coupling strength via the
Ginzburg criterion. By using the described experiment
one could also measure the pressure corresponding to the
values d � 0.26 and d � 0.46. An approximate form of
the relation p�d� could then be obtained by linearization.
Strictly speaking, these arguments hold only if the dipole
term can be neglected. However, the temperature range
for the planar phase, 1029 K, is so narrow that it would
probably not even show up in experiments with realistic
temperature resolution.

Also, the order parameter jump depends strongly on the
coupling strength. With the larger couplings c � 0.01 we
0 0.01 0.02 0.03 0.04 0.05
c

0

2

4

6

8

10

kH
z

FIG 6. Dependence of the discontinuity of the frequency shift
(in kHz) on the coupling strength c.

find �r � 0.01 for the jump into the B-phase at the triple
point. This leads to a discontinuity in the frequency shift of
about 2000 Hz as opposed to, e.g., 370 Hz for c � 0.002.
We think that it would be even easier to infer the size of the
critical region from measuring this order parameter jump.
At least, this way it should be possible to get upper bounds
for the coupling strength that are rather close to the range
discussed in this article. To facilitate the interpretation of
such NMR experiments, we calculated the jump of �n for
various other values of the coupling strength c at d � 0.15.
We show the result in Fig. 6.

In conclusion, our quantitative description of the phase
diagram of 3He should permit one to extract reliable infor-
mation about the system’s microphysical interactions from
future experiments.
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