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Plasma Electron Trapping and Acceleration in a Plasma Wake Field Using a Density Transition
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A new scheme for plasma electron injection into an acceleration phase of a plasma wake field is
presented. In this scheme, a single, short electron pulse travels through an underdense plasma with
a sharp, localized, downward density transition. Near this transition, a number of background plasma
electrons are trapped in the plasma wake field, due to the rapid wavelength increase of the induced
wake wave in this region. The viability of this scheme is verified using two-dimensional particle-in-cell
simulations. To investigate the trapping and acceleration mechanisms further, a 1D Hamiltonian analysis,
as well as 1D simulations, has been performed, with the results presented and compared.
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Compared to standard radio-frequency linear accelera-
tors, advanced accelerators using plasmas can produce
much higher acceleration gradients, in excess of 1 GeV/m.
Hence, extensive research on plasma-based accelerators
[1-4] has been performed in recent years. For plasma-
based accelerators, short, intense laser [laser wake field
accelerator (LWFA)] or electron beam [plasma wake field
accelerator (PWFA)] pulses are used to drive large am-
plitude plasma waves. In these schemes, the maximum
achievable accelerating gradient scales as the nonrelativis-
tic plasma frequency w, = (47nge?/m,)"/2. Here no, e,
and m, denote the plasma density, electron charge, and
electron mass, respectively. Thus high gradient operation
implies use of short period waves, and in order to obtain a
beam with small energy spread, an ultrashort (<1 ps) ac-
celerating pulse must be injected into such a system. This
requirement, however, is difficult to meet with an external
injector, especially in the case of the LWFA. The chal-
lenge of injection in the LWFA has led to proposals of
all-optical plasma electron injection schemes using two [5]
or three laser pulses [6]. However, these optical methods
require extremely accurate laser spatial and temporal over-
lap, which again leads to technical difficulties.

To avoid these problems, Bulanov et al. [7] proposed a
self-injection scheme using a single laser pulse propagat-
ing in an inhomogeneous plasma. In their scheme, trap-
ping of background plasma electrons occurs from wave
breaking induced by a gentle density decline, in which
the density scale length Ly = no/|dno/dz| is much larger
than the plasma skin depth k,' = vj/w,, where v, = ¢
is the driving pulse’s group velocity. As the laser pulse
propagates down the density gradient, the phase velocity
of the wake gradually decreases until it becomes equal to
the plasma fluid oscillation velocity, which results in con-
ventional wave breaking. Bulanov’s scheme is much sim-
pler than other plasma injection methods but leads to an
injected beam pulse with a relatively large phase spread.
In addition, the accelerating and focusing fields in a typi-
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cal LWFA are relatively nonuniform and may not give as
high a beam quality as the blowout regime of the PWFA
[8,9], in which a plasma electron-rarefied region is formed
in the wake of the driving electron beam. Inside of this
rarefied region, an accelerating electron experiences accel-
eration dependent only on longitudinal position, and focus-
ing which is linear in offset from the axis, just as in more
conventional accelerators. Furthermore, beam electrons in
this PWFA scheme experience less scatter with background
plasma electrons during acceleration. Thus superior beam
quality is expected from the PWFA in this regime.

In this Letter, we propose a new self-injection scenario
for the PWFA in the blowout regime, where the beam den-
sity is greater than the plasma density, n, > ng (under-
dense condition). It is known that in the one-dimensional
(1D) limit of a PWFA with uniform plasma density, self-
trapping of background electrons by the wave is very diffi-
cult [10,11]. Further, it is observed in two-dimensional
(2D) simulations of the PWFA in the blowout regime
that self-trapping in a uniform plasma is even more dif-
ficult when transverse motion is allowed. To achieve self-
trapping in the PWFA, we propose to introduce a sharp,
localized density gradient. In this scheme, a single short
electron beam pulse is sent through an underdense plasma
with a sharp downward density transition with k,L; < 1,
marking the boundary between a dense upstream region
(I) and a less dense downstream region (II). When the
beam passes a sharp downward plasma density transition,
the wavelength of the plasma wave changes rapidly. In
this situation, the plasma electrons that originate just in-
side region II spend much of their oscillation in region I
before returning to near their initial position in z, advanced
in wave phase compared to the nominal (uniform plasma)
region II oscillation. At this position, normally (for a uni-
form plasma) the electron is phased in the wake such that
the electric field is zero, but in the case we now consider,
the faster oscillation of the electron in region I allows the
electron entering region Il to remain in an accelerating
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phase. This proposed dephasing mechanism, which is
justified in qualitative and quantitative detail below, al-
lows plasma electrons to be trapped and accelerated in
region II. This phenomenon is shown in Fig. 1, which
displays a 2D particle-in-cell (PIC) simulation using the
code MAGIC. This injection mechanism is fundamentally
different from Bulanov’s gentle density gradient scheme
for the LWFA. In Bulanov’s case, plasma electrons are
trapped in the second plasma oscillation period, but they
arise from wave breaking in the first period. On the other
hand, in the present scheme, plasma electron trapping oc-
curs in the first rarefied cavity, due to localized nonlaminar
motion near the sharp density transition, and at wake am-
plitudes well below conventional wave breaking.

We have explored density transition-induced particle
trapping using 2D PIC simulations (both MAGIC, and
a UCLA-specific code NOVO-PIC) in order to illumi-
nate the physical mechanisms relevant to the trapping
process. The MAGIC results shown in Fig. 1 were ob-
tained with an ambient plasma density of n(I) =5X
103 em™3 for kl'z < 11.2 and ny' = 3.5 X 10" cm™3
for kll,lz = 11.2, plasma electron temperature kT, = 3 eV,
and stationary ions. Here we parametrize lengths in
terms of the plasma skin depth in region II, k},l =

\/47Tnélez/mecz. The ultrarelativistic (16 MeV) drive

beam density distribution employed in the simulation
was chosen as a bi-Gaussian ny,(r, &) o« e~ " /207 ¢=¢"/202
(€ = z — vpt), with peak density n, = 2.4n} = 3.4n,
and dimensions k)'o. = 1, k}'o, = 0.56. In Fig. 1(a)
we observe the trapped population of electrons just as they
return to near their initial position (beam at k},lz = 18.6),
and the associated structure of the wake, which is some-
what complicated at this point. Two features are clearly
shown, however: a clear difference in wave frequencies
between regions I and II and a local breaking of the wave
near the boundary. In Fig. 1(b), it is seen that, after
traversing an additional few plasma wavelengths past the
boundary (beam at k,'z = 35.2), the trapped plasma elec-
tron bunch is loaded into a well-behaved blowout regime
wave. Furthermore, this injected electron population is
transversely controlled by uniform ion focusing in the
blowout region.
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FIG. 1. Configuration space (r, z) distributions of the plasma
electrons from the MAGIC code 2D PIC simulation.
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The longitudinal phase space of the plasma electrons
at the two times corresponding to Figs. 1(a) and 1(b) are
shown in Fig. 2. Figure 2(a) shows that a significant
amount of plasma electrons are injected into the acceler-
ating wave. Figure 2(b) shows that the trapped plasma
electron population (in the range of 5-15 MeV/c) has
attained excellent separation in momentum from the back-
ground plasma. The population of trapped particles occu-
pies a longitudinal phase extent of 8¢ /27 = 9%, with a
large charge of about 0.5 nC for these parameters. Care-
ful comparison of Figs. 2(a) and 2(b) indicates very little
phase slippage of the trapped electrons during accelera-
tion. With such a small beam phase extent, it would be
possible to simply compensate the momentum spread by
slowly lowering the plasma density further, to rephase the
trapped electrons to forward in the wave.

In systematic simulation studies of this scheme, we var-
ied the characteristics of the density transition: the sign
of density change, the amplitude of the density difference
across the transition, and the density transition scale length.
In all simulations, the driving beam and plasma character-
istics were kept similar, in which blowout is complete and
the plasma electron motion is both nonlinear and mod-
erately relativistic. In these studies we observed trapping
only in the case of a downward (in the direction of the beam
travel) density transition. In addition, it was found that the
number of trapped particles increased as the amplitude of
density decrease was made larger. Finally, if the length
over which the density was linearly decreased from its ini-
tial to final value becomes larger than a plasma skin depth
k;‘ = c¢/w,, then the trapping disappears completely.

A further, definitive clue as to the trapping mechanism
is that the trapped electrons all initially dwell, as stated
above, in region II. These observations have led to the
development of our trapping model, in which the initial
motion of the plasma electrons is in the negative z direction
(as well as the positive radial direction) under the forces
induced by the drive beam. Upon entry into region I,
the electrons experience wave fields which have a shorter
oscillation wavelength and can be dephased and trapped.
This model also qualitatively explains why we must have
k,Ls < 1. If it is that the scale length is longer than the
oscillation distance in z, then the plasma electrons cannot
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FIG. 2. Longitudinal momentum versus z of the plasma elec-
trons for Figs. 1(a) and 1(b).
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access the region of significantly higher plasma electron
density.

At this point, we place our model on firmer analytical
ground. As a useful 2D analytical model of plasma elec-
tron motion in the blowout regime does not exist, we pro-
ceed to develop a 1D, fully relativistic analysis of plasma
motion in both regions and propose a scenario in which
the motion of the plasma electrons is not strongly affected
by the existence of the transition. A Hamiltonian analysis
of the phase space trajectories of trapped electrons is thus
made possible. This analytical model is then compared
to the results of 1D PIC simulations, in order to verify as-
pects of the model and also point to its limitations. Without
discussing any model details, some limitations are imme-
diately apparent. First, in the blowout regime, the plasma
electron density tends to vanish in the wake of the drive
beam, while in 1D nonlinear wave theory, the plasma den-
sity does not drop below one-half of the initial density ny.
In addition, a 1D wave driven by an electron beam is some-
what of a practical improbability, as it implies total beam
charge in excess of what is presently found. Nonlinear
1D plasma waves may be driven by ultrashort laser pulses,
however, and so the present analysis may have some direct
application to density transitions in the LWFA. Note that
a large amplitude, nonlinear wave is necessary to allow the
trapping process we wish to describe, since for waves with
amplitudes well below the wave breaking limit, the plasma
electrons do not move appreciably from their initial posi-
tion and do not attain relativistic oscillation velocities.

We begin the analysis by reviewing nonlinear 1D plasma
wake field theory, which has its basis in the fundamen-
tal work of Akhiezer and Polovin [12-15]. In this the-
ory, with the wave ansatz assumed [all system spatial
and temporal dependences can be expressed using 7 =
w,(t — z/vp)], the differential equation governing rela-
tivistic cold fluid takes the following form:

d? I—Bbﬁ}_ 2[ B nb}
dT2|: /—1 — ﬁ2 IBb Bb — ﬁ + 1o 5 (1)
where ny, is the beam density, 8, = v, /c is the normal-
ized beam (as well as wave phase) velocity, and 8 = v/c
is the normalized plasma electron velocity.

Since the plasma wave is impulsively excited by the
driving beam, we concentrate on the plasma dynamics in
the region behind the beam. There, for a very relativistic
beam (B, — 1), Eq. (1) can be rewritten as

X! = %[x% - 1}, with x = i n g )
where the prime denotes d/dr. Equation (2) is equiva-
lent both to the Poisson equation and the plasma elec-
tron equation of motion, so we can write the field and
plasma fluid quantities, i.e., density, nlo = %(1 + x%), po-
tential, —e¢p = m,c*(1 — x), and electric field, —eE =

k,m.c’x'; as well as the dynamical quantities y = %(x +
1 1-x? 1,1 :
1), B = 15z, and By = 5(y — x), using only x.

With these results, we can perform a Hamiltonian analy-

sis of the plasma electron motion. In the Galilean frame

moving with the wave, the Hamiltonian H is constant,

H=—e¢ + ymc* — Bym,c?

= m,c*(1 — xf) + mec?x, . 3)

Here the quantity x; corresponds to the field (and the
plasma fluid) properties, as outlined above, while x, =
V(@ — B.)/(1 + B.) describes the dynamical state of any
electron, fluid, or otherwise injected into the system. As H
is invariant, the difference Ax = x; — x, is also constant.
Knowledge of the value of H and the function x; thus al-
lows one to map the electron trajectories in phase space and
easily determine which trajectories are trapped. With H
as written above, electrons with Ax > x i are trapped,
defined such that as x; — X min, X. approaches zero and
B. — 1. With this model in mind, we can now dis-
cuss the approximate effects of the density discontinuity.

In this analysis we assume that the density discontinuity
can be approximately modeled by using the Hamiltonian
analysis in both regions on either side of a sharp density
transition. The fields on both sides of the moving (in the 7
frame) density boundary are assumed to be correctly given
by the wave analysis. Note that at the boundary, the value
of xy is discontinuous, which implies that H changes sud-
denly when the electron crosses the boundary. This discon-
tinuity in 4 mathematically allows the trapping of initially
cold plasma electrons (x, = 0) in an ultrarelativistic phase
velocity wave.

We also note that, because the system is 1D, at the den-
sity transition boundary (which moves backward in the
wave frame at —v, = —c) there is a self-consistent dis-
continuity in the electric field of AE = 47 . Here o is
the net surface charge density “absorbed” by the bound-
ary due to displaced electrons from the upstream side and
“emitted” by those that would be displaced to the down-
stream side. The field near the boundary is illustrated in
Fig. 3, which displays E(z) found by theory and simula-
tion. While the peak field in the two regions is the same,
the field in the downstream, high-density region changes
more quickly, since the plasma frequency is higher.

Even though the electric field discontinuity at the density
transition is self-consistent in terms of displaced charge, it
is of course unphysical in the sense that the fluid electrons
are not emitted or absorbed by the boundary between the
two regions. The fictional absorption at the boundary
is also conceptually at odds with the physical model of
trapping, in which the plasma particles move significantly
past the boundary. Nevertheless, we find some agreement
with this model and 1D PIC simulations, as shown in
Fig. 3. Here we also display the simulation-derived
electric field associated with the same physical parame-
ters (beam surface charge density of 0.36 uC/cm?,
nop = 3.5 X 103 ecm™3 for z > 0.5cm, and ny = 5 X
10"* cm™3 for z < 0.5 cm) as used in the analytical
model. The agreement is quite good for the fields calcu-
lated in the region z << 0.5 cm, which is the important
zone for electron trapping dynamics, as we shall see.
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FIG. 3. Plot of the wake electric field in the two regions (ny =
3.5 X 108 em™3 for z > 0.5 cm and ng = 5 X 1013 cm ™ for
z < 0.5 cm). The solid line indicates the field in the region
calculated from the analytical model, while the dashed line indi-
cates the model-derived field in the conjugate region. The thick
dotted line is the field calculated from a 1D PIC simulation.

In order to determine how to connect the distinct values
of H in the two regions of interest, the position of the elec-
trons as a function of 7 must be known, from which we
find the time of boundary crossing. This can be accom-
plished by integrating the velocity,

. 15} ¢ 72 IB )
Z—c/t1 ,Bdt—wp . <,3_1 dr

kP T 2x3 T

In the special case of the fluid electrons, x; = x., we have
kpz = %f[n(*r) — ngldr, a result that emphasizes that
the wave fluid motion is initially in the negative direction
and arrives back at the starting position after one period.
Using the formalism we have developed, we can com-
pare the dynamics of a trapped electron from the 1D PIC
simulation to that derived from the analytical model. The
electron we follow in the simulation is initially located
at z = 5.1 cm (1 mm downstream of the density transi-
tion). To employ the theoretical model, we must follow the
electron initially in the low-density (downstream) region,
calculate its position and momentum crossing the transi-
tion using Egs. (3) and (4), and connect the values of H
across the boundary. This calculation is then repeated in
the high-density (upstream) region, the final value of H in
the downstream region is calculated, and the motion exam-
ined for trapping. The results of this exercise are shown
in Fig. 4, which displays the phase space trajectory of the
electron in both the model and simulation. Good agree-
ment on the predicted trajectory is obtained in the region
of negative momentum, as expected from the agreement
of the fields in the upstream region (Fig. 3), while notable
disagreement occurs when the electron reapproaches the
density transition from the upstream side. This disagree-
ment arises from the inconsistency of the discontinuous
field model we have developed, because of non-negligible
charges passing through (not stopping at) the transition.
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FIG. 4. Phase space trajectory of a trapped electron originating
0.01 cm downstream of the plasma density transition, for the
simulation and parameters of Fig. 1.

Note that even though the exact phase space trajectory in
the transition region is not accurately predicted, the final
phase of the electron after trapping is well predicted by the
analytical model.

The PWFA-based self-injection scheme we have
proposed in this paper demands further theoretical and
numerical investigations of detailed issues such as beam
quality of the trapped plasma electrons, dephasing, drive
beam quality degradation in the plasma, etc., and this will
be done in the near future. To verify this new injection
scheme, we are planning an experiment with an existing
argon plasma source [16], which was originally developed
for the underdense plasma lens experiment at the Neptune
Advanced Accelerator Laboratory of UCLA.
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