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Fluctuations in Finite Critical and Turbulent Systems
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We show that hyperscaling and finite-size scaling imply that the probability distribution of the order
parameter in finite-size critical systems exhibit data collapse. We consider the examples of equilibrium
critical systems, and a statistical model of ecology. We propose an explanation for recent observations
that the probability distribution of turbulent power fluctuations in closed flows is the same as that of the
harmonic 2DXY model.
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Critical systems with identical symmetries, dimension,
and exponents are defined to be members of the same
universality class, but must they also share the same
probability distribution for the fluctuating variables or
order parameters? And if two systems do indeed exhibit
the same probability distribution, are they necessarily in
the same universality class, in the conventional meaning
of the term?

Recently, light has been shed on these issues by studies
of the probability distribution functions (PDFs) of fluc-
tuating quantities in finite critical systems. Bramwell,
Holdsworth, and Pinton (BHP) [1] observed data col-
lapse for the two-dimensional XY model (2DXY) in the
spin-wave regime at low temperatures and in statistical
models of nonequilibrium dynamics which exhibit self-
organized criticality (SOC). Even more remarkably, they
found that the power fluctuations in a closed turbulent
flow exhibit exactly the same form of data collapse,
with a scaling function that is indistinguishable from the
aforementioned statistical critical models. Taken at face
value, these observations lend support to the notion that
finite Reynolds number (Re) turbulence is indeed a critical
state, and that there is a kind of superuniversality between
systems with different dynamics and even dimensionality.

The purpose of this Letter is to show that finite-size sys-
tems that are in the critical regime should be expected to
exhibit just this sort of data collapse. The system in ques-
tion may be either an equilibrium system near its criti-
cal point or a nonequilibrium system that attains a critical
state through fine-tuning or other mechanism for achieving
scale invariance. However, we are unaware of any reason
a priori to expect that the probability distribution should
be superuniversal, and indeed we exhibit a counterex-
ample. Finally, we argue that the apparent agreement
between magnetic systems and experiments on closed tur-
bulent flows, while interesting and genuine, is not indica-
tive of the intrinsic behavior of turbulence; we propose
an explanation for the observations that appears to explain
not only the data collapse but the Reynolds number depen-
dence as well.

Probability distribution data collapse.—Let us now re-
view in more detail the findings of BHP. They exam-
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ined the 2DXY model in the harmonic approximation for
temperatures well below the Kosterlitz-Thouless transition
TKT. Although in an infinite system the magnetization �M
should be identically zero, for a finite system there are
large fluctuations, and they measured the PDF for a range
of system sizes and temperatures.

The scaled PDFs of the magnetization below TKT
collapse onto each other for different system sizes and
temperatures, provided one works in the harmonic ap-
proximation and the correlation length, j, is larger than
the system size. The scaling necessary to achieve this data
collapse is that the independent variable �h � jMj� is
replaced by y � �h 2 �h���s, where s is a measure of
the width of the PDF, such as the width at half maximum.
A similar data collapse was seen in a statistical model of
ecology [2], where the scaled probability distribution of
species abundance in a region was found to be independent
of its area. Pinton et al. [3,4] performed experiments on
confined turbulent flows maintained at constant Reynolds
number and looked at the PDF of power fluctuations.
These too showed data collapse across different Reynolds
numbers. Remarkably the PDFs for the turbulence data
and the 2DXY model overlap within the precision of
the data.

Subsequently a number of SOC systems, such as the
Bak-Tang-Weisenfeld sandpile model [5], the Sneppen de-
pinning model [6], the autoigniting forest fire model [7],
and a model for granular media [8], have been studied,
and they too seem to show data collapse with a PDF very
similar to that observed in the turbulence experiment [9].
The same holds true of the 2D Ising and 2D site percolation
models as well. This seems to suggest that the scaling form
is independent of system attributes such as symmetry (dis-
crete or otherwise), state (equilibrium or otherwise), etc.

A similar phenomena was noted a long time ago by
Nicolaides and Bruce [10], who were interested in the
question of whether a universality class is defined by the
values of the critical exponents, or whether the probabil-
ity distributions were common to members of the same
universality class. They found that the PDF of the two-
dimensional Ising, spin 1, and f4 models all had the same
form in finite systems.
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In fact, the issue of data collapse is linked with the
existence of hyperscaling—the presence of scaling laws
that relate dimensionality, correlations, and thermodynam-
ics [11]. We will show that hyperscaling is a sufficient
condition for explaining these phenomena. However, it is
not a necessary condition [12]. Let us begin with a discus-
sion of data collapse in equilibrium systems. In finite-size
magnetic systems, the PDF has a scaling form in the criti-
cal region [13], PL�M� � Lb�n ef�L�j, MLb�n�, where ef
is a scaling function, b and n are the critical exponents for
the order parameter M and the correlation length j, respec-
tively, and L denotes the linear dimension of the system,
assumed to be in d dimensions.

Near the critical point the correlation length becomes
larger than the system size and making the unjustified as-
sumption (a priori) that ef is analytic in the first argument,
we obtain PL�M� � Lb�nf�MLb�n�. The sum rule for the
static susceptibility xT implies that kBTxT � Ld��M2� 2

�M�2	. Notice that the quantity in the brackets is the
variance of the probability distribution of the magnetiza-
tion. The finite-size scaling form for the susceptibility
is xT � Lg�n ex�L�j�. In the limit j�L goes to infinity
the scaling function ex tends towards a constant. Thus
the measure of the width of the fluctuations, s, scales as
s2 � �M2� 2 �M�2 � Lg�n2d .

BHP found that sP�M�s� is a universal function, inde-
pendent of system size. To test this, compute the function
sP�M� � Lg�2n2d�2Lb�nf�MLb�n�,

sP�M�s� � L�g12b2dn��2nf�MLb�n1g�2n2d�2�s� .
(1)

Combining the hyperscaling relation, 2 2 a � dn, and
Rushbrooke scaling, a 1 2b 1 g � 2, gives g 1 2b �
dn. Given this identity it follows that all L dependence in
(1) disappears and we are left with a statement of data col-
lapse: sP�M�s� � f�M�s�. Thus as long as finite-size
scaling holds true near the critical point and hyperscaling
is obeyed, the data, for different sizes, fall on top of each
other for a given system. To our knowledge, this was first
observed empirically by Nicolaides and Bruce [10].

There are interesting consequences for the moments of
the PDF, P, illustrated here for the first two. The mean of
the distribution is

�M� �

R
MP�M� dMR
P�M� dM

� s

R
zF�z� dzR
F�z� dz

, (2)

where F is a scaling function.
The integral is a pure number, so that the ratio of the

mean and the variance is independent of L (�M� � s).
The moment relation is a direct result of hyper-

scaling, �M� � L2b�n , s � Lg�2n2d�2, and �M��s �
L2�2b1g2dn�2n�. Hyperscaling then requires the L depen-
dence in the ratio to vanish. This relation between the
mean and variance has been explicitly calculated for the
2DXY model in the spin-wave approximation [9]. The mo-
1008
ments of the order parameter satisfy mn � gn�g2�2�2n�2sn

and mn � m
n
1 � sn implying s � m1 � �M�.

Probability distribution data collapse in an ecology
model.—This scaling is fundamental to data collapse and
holds even for systems not in thermal equilibrium. In par-
ticular, it holds for the ecology model mentioned earlier.
Harte et al. [2] proposed a model for the species abun-
dance distribution observed in nature. It has been empiri-
cally observed that the number of species S in a patch of
area A obeys a scaling law, S � Az . Presumably this is
an asymptotic in time form of a more general dynamical
model, as the time evolution within this model is not speci-
fied. Nevertheless, one can construct a recursion relation
for the PDF, Pi�n�, the probability for finding a species
with n individuals in a patch i. Patches i are constructed
by successive bifurcation of an initial biome. The key in-
gredient of the model is the assumption of self-similarity,
which forces the species-area law, but allows the proba-
bility distribution for the number of species resident in a
biome to be calculated. If a species is found in area Ai ,
then there is a nonzero probability a, for finding it in one of
the two halves (area Ai11 � Ai�2), which is independent
of i. The independence on scale i of the probability a gives
rise (or more accurately, is equivalent) to the species-area
rule, with a � 22z . The resulting equation turns out to be

Pi�n� � xPi11�n� 1 �1 2 x�
n21X
k�1

Pi11�n 2 k�Pi11�k� ,

(3)

where x � 2�1 2 a�. The variance of this PDF was com-
puted by Banavar et al. [14]:

s2
i �

m2i21X
j�0

�2 2 x�j �2 2 x�m2i21x�1 2 x� , (4)

where m is defined as the maximum number of times
the system can be subdivided before no species exist on
the smallest patch �Pm�1� � 1	. When the system size is
much bigger than the size of this smallest patch, the vari-
ance obeys a simple recursion relation, si�si11 � 2 2 x.
The data collapse observed for this model is the statement
siPi�n� � si11Pi11�n0� and n�si � n0�si11. It can be
shown [15] that the PDF satisfies a finite-size scaling re-
lation of the form Pi�n� � 1�nf�n�N

f
i �, where f is a

crossover scaling exponent, Ni is the number of individu-
als of all species in biome patch i, and N

f
i11 � 22fN

f
i ;

then the data collapse is equivalent to a relation between
the exponents, f�n�N

f
i � � f���n��2 2 x�Nf

i 22f��� leading
to 2 2 x � 2f which is equivalent to f 1 z � 1.

This relation is nothing but the hyperscaling relation ob-
served in the magnetic system. This can be seen by con-
sidering the asymptotic forms of the mean and variance
of the PDF, �n� � Nf and s � �2 2 x�m � 2mf � Nf.
This immediately gives us the moment scaling which was
crucial to data collapse and hyperscaling, s � �n�. It is
remarkable that the ecology model shows this behavior for



VOLUME 86, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 5 FEBRUARY 2001
its moments — an unforeseen consequence of the assump-
tion of self-similarity.

Power fluctuations in a turbulent flow.—Having estab-
lished that hyperscaling (moment relationships) implies
data collapse (but not necessarily the other way around)
let us turn our attention to the case of confined turbu-
lent flows. The experiment consists of a closed cylinder
in which a turbulent fluid is driven at the top and bot-
tom by counterrotating plates with vanes, moving at the
same mean angular frequency. The PDFs for power fluc-
tuations P were measured [3,4] for different Reynolds
numbers (Re) and found to exhibit data collapse. How-
ever, the ratio of the mean to the variance depended on
Re: Prms�P � Re2a , a � 0.33.

What controls the fluctuations in this flow? One point
of view would be that there is a direct analogy between
critical phenomena and turbulence [1,16], with the finite
Reynolds number playing the role of the finite system size.
However, simple hyperscaling would explain the data col-
lapse but would not explain the observed dependence of
Prms�P on Re: the mechanism presented in [12] would
need to be invoked, and demonstrated. Here we propose
that there may be a different explanation rooted in the flow
itself.

We hypothesize that the flow is composed of a tur-
bulent region around the top plate with a mean angular
momentum, another oppositely directed turbulent region
around the bottom plate, and an interfacial region between
them— a shear pancake. Experiments were performed
in both open and closed geometries, which differ by the
absence or presence of a confining cylindrical wall. In
the open geometry, the power fluctuations of each plate
were non-Gaussian, and negatively skewed, while the total
power (sum of the power measured at each plate) fluctua-
tions were Gaussian. In the closed geometry all of these
three quantities were non-Gaussian, with a scaled proba-
bility distribution apparently indistinguishable from that of
the 2DXY model simulations.

In the open geometry, the shear pancake can shift its
mean vertical position instantaneously as shear energy is
dissipated horizontally, but in the closed geometry, this is
not possible because of the walls. In the open geometry,
as the shear pancake moves, the net turbulent energy in
the upper half of the cell will increase or decrease while
that in the lower half of the cell will decrease or increase:
hence, we anticipate that the power fluctuations should be
anticorrelated, in agreement with observations [17].

In the closed geometry, we can describe the shear pan-
cake by its height h�x, y� above the x, y plane positioned
parallel to and equidistant from the rotating plates. The
shear pancake experiences random fluctuations from the
turbulent flows, which drive it with an effective, Reynolds
number dependent temperature T �Re� and Boltzmann dis-
tribution Ph�h� ~ exp�2S�h��T 	. The action S�h� de-
scribes local height fluctuations of the shear pancake, and
the power dissipation of the system should be expected to
depend in some way on the friction between the two coun-
terrotating turbulent flows, i.e., on the surface area of the
shear pancake, and not its absolute mean height. Any lo-
cal fluctuation increases the total surface area of the shear
pancake and hence increases the power dissipation in both
flows. Hence, in this case, we anticipate that the power
fluctuations would be correlated, in agreement with obser-
vations [18]. Thus the action should be of the form

S�h� ~
Z

dx dy
q

1 1 �=h�2 

Z

dx dy�=h�2, (5)

which is the Hamiltonian of the 2DXY model in the spin-
wave approximation, making the identification of h with
the phase u.

In order to complete the dictionary between the PDFs
of the 2DXY model magnetization and the turbulent
power, we note that the power dissipated is by hypothesis
proportional to S�h� and thus is linearly dependent on
�=h�2. Similarly, the absolute value of the magnetization
per spin M, measured in the 2DXY simulations (for N

spins �Si) is given by M �
q

�
PN

i�1
�Si� ? �

PN
j�1

�Sj��N 

1 2

1
4N

P
ij�ui 2 uj�2, showing that the probability

distribution of magnetization fluctuations is indeed the
counterpart of the power fluctuations in the turbulent
flow. It follows from our assumptions above that the
probability distributions should be identical. Note that we
are definitely predicting that the power probability distri-
bution should be that of the 2DXY model in the harmonic
approximation only. Indeed, we have simulated the 2DXY
model for temperatures near the Kosterlitz-Thouless tran-
sition, and find significant deviations from the probability
distribution for the turbulent power and the 2DXY model
in the harmonic approximation as shown in Fig. 1 (and
has also been noticed by Archambault et al. [19] and
Palma et al. [20]).
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FIG. 1. Probability distribution function of the magnetization
in a 2DXY model for different values of temperature: J�KBT �
0.75 (±), 0.78 (�), 0.82 (¶), 0.85 (1), and 0.9 (3). The solid
line represents the universal distribution of BHP [1].
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FIG. 2. Data from Pinton et al. [4] with the best fit and a fit
to our predicted slope of 20.25.

Now we discuss the Reynolds number dependence of the
ratio m�s. By hypothesis, this should be given by using
the temperature dependence of m�s from the harmonic
2DXY model, but with T given by T �Re�. To see how the
effective temperature should scale with Re, note that the
velocity of the flow scales as RV where R is the radius
of the plates, and V is the angular velocity. The net mass
per unit height of the cylinder scales as R2. Hence the net
kinetic energy scales as R4V2. The Re number is propor-
tional to R2V so that the energy scales as Re2. The number
of degrees of freedom giving rise to this turbulent energy is
proportional to Re9�4, so that T �Re� � Re21�4. Using the
fact that m�s � T21 [19] we obtain that m�s � Re1�4,
which agrees reasonably with the data, although the expo-
nent is not the optimal fit to all the data points, as shown
in Fig. 2.

Drawing on the analogy with the 2DXY model, one
can surmise that the equilibrium configuration of the shear
pancake is not flat but the surface is rapidly fluctuating.
The asymmetry of the PDF towards lower values reflects
the relative smoothening of the surface. The shear energy
dissipated is restored by the change in power supplied at
the disks so as to maintain the constant Re flow. The
injected power has also been measured, by monitoring the
pressure on the vanes [21], to show a similar asymmet-
ric PDF.

Finally, we mention that the dynamic universality
class of the height fluctuations should be the 2D Ed-
wards-Wilkinson model [22]; the functional form of the
predictions for the time dependent correlations of the
power are consistent with observations, and the Reynolds
1010
number dependence will, elsewhere, be used to test the
model we have proposed.
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