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Gas-Induced Solitons
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The self-guiding of femtosecond laser pulses in air is investigated. For powers close to the threshold
for self-focusing, we show that the balance between the nonlinear focusing of the beam and its defocusing
by multiphoton sources produces a new kind of solitonlike structure. Over considerably long distances,
the radial profile of the pulse relaxes to a steady-state shape, whereas its temporal profile shrinks along
propagation. The influence of the normal group-velocity dispersion is finally discussed.
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Femtosecond laser beams with high peak power
have experimentally been observed to propagate by self-
channeling over several Rayleigh lengths in the atmosphere
[1–6]. Since the pioneering work by Braun et al. [1],
numerous investigations have been devoted to model this
spectacular propagation [6–10], which mainly proceeds
from the balance between the Kerr response of air, that
overcomes diffraction and focuses the pulse when its
input power exceeds the self-focusing threshold, Pcr, and
the defocusing action of self-induced ionization. Among
these theoretical attempts, two main scenarios have
emerged to support the experimental features. First, the
“moving-focus” model was proposed [6] as an intuitive
approach of the spatiotemporal dynamics of ultrashort
pulses in air. According to this model, the pulse is
stacked into transverse slices in the time direction. The
slices towards the center of the pulse contain powers
exceeding Pcr, whereas those on the wings are below
critical. Consequently, the center of the pulse undergoes
a collapse that develops all the faster as the power is
high [11]. The end result is that, instead of being a focus
point, the nonlinear focal region is spread out along the
propagation axis. The longest slice then corresponds to
peak power exactly equal to critical, for which the right
balance between diffraction and nonlinear focusing is
realized. This explanation succeeds in describing the
initial optical phase in the formation of light channels.
However, it cannot account for plasma generation and
subsequent self-guiding of light that persists well beyond
the linear focus of convergent beams [3]. On the basis of
numerical simulations [8], a second scenario was recently
stressed instead, following which the formation of light
guides is dynamic and highly sensitive to the electron
plasma created by ionization. First, the self-focusing beam
generates a narrow plasma which strongly defocuses the
trailing part of the pulse and produces one leading peak.
Once the intensity decreases enough, plasma generation
turns off. The back of the pulse can then focus again,
which finally creates a two-spiked structure in the wave
temporal profile. This sequence of events can repeat
many times in principle and light guiding results from the
so-called “dynamic spatial replenishment of light” [8].
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This scenario was observed for peak powers above 5Pcr
and most of its characteristic stages were later confirmed
at higher power levels [10].

From these different analyses, it appears that the opti-
cally induced ionization not only arrests the collapse and
possibly “stabilizes” the beam over long distances, but
also distorts the temporal shape of the pulse. We can
thus wonder whether there exists a fundamental structure,
which could efficiently sustain the beam by relying on the
saturating effects carried out by the electron plasma, while
accounting for such temporal distortions. In this paper,
we address the question of determining the basic struc-
ture that a pulse may keep along propagation in the atmo-
sphere. We show that a pulse envelope with power close
to critical and coupled with an electron plasma created by
multiphoton ionization (MPI) can indeed evolve to a new
robust waveform. In the absence of group-velocity disper-
sion (GVD), this wave packet exhibits a temporal profile
having only a leading peak that shrinks on the time axis. In
the diffraction plane, the pulse converges to a steady-state
object and behaves like a spatial soliton. As a result, a
new kind of light guide arises, stable transversally while
shrinking temporally, and capable of persisting over con-
siderable distances. The variations in time caused by GVD
and expected to stop the temporal compression of this
elementary structure are finally studied.

Our model consists of an extended nonlinear
Schrödinger (NLS) equation governing the slowly
varying envelope of the laser electric field, E ��r , t, z�,
coupled with the density, r��r , t, z�, of electron plasma re-
sulting from ionization. Expressed in the reference frame
moving at the group velocity, i.e., the variable t refers
to the retarded time variable t 2 z�yg with yg � �≠k�
≠vjv0�21, the propagation equation for E reads

2ik0≠zE 1 D�E 1 2k2
0n2jE j2E 2 k2

0
r

rc
E � 0 .

(1)

Here z is the propagation length, the Laplacian models the
wave diffraction in the transverse plane, k0 and v0 are the
wave number and frequency of the carrier wave, n2 de-
notes the nonlinear refraction index in the Kerr response
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of air entering Pcr � l
2
0�2pn2, and rc is the plasma criti-

cal density. Following Keldysh’s theory [12], we as-
sume that MPI dominates for peak intensities less than
1014 W�cm2 and, therefore, an atom with ionization po-
tential Ui is ionized by the absorption of K photons with
energy h̄v0 [K � mod�Ui�h̄v0� 1 1]. The electron den-
sity thus obeys

≠tr � sjE j2K �rat 2 r� , (2)

where the coefficient s is related to the cross sec-
tion for inverse bremsstrahlung and r never exceeds
a few percent of the initial atom density rat � 2.7 3

1019 cm23 ø rc � 1.8 3 1021 cm23. We first disregard
the GVD of the beam, as in self-focusing regimes the
dominant effect altering the temporal profile of pulses
with about 200 fs duration is mainly MPI [10]. In
addition, because energy losses are of little influence
in the pulse propagation, we also neglect plasma and
multiphoton absorptions. For simplicity, the Kerr response
of air is considered only as instantaneous and delayed
components [13] are omitted. In typical experiments, one
has at atmospheric pressure n2 � 3.2 3 10219 cm2�W,
K � 10 with Ui � 14.6 eV at the laser wavelength
l0 � 800 nm, s � 102128 W210 cm20 s21, and the
critical self-focusing power is Pcr � 3.2 GW. The in-
put pulse is a collimated Gaussian beam, E �r , t, 0� �p

2Pin�pw2
0 e2r2�w2

02t2�t2
p , with temporal half-width

tp � 170 fs, waist w0 � 1 mm, and Rayleigh length
z0 � pw2

0�l0 � 4 m. Pin is the peak input power enter-
ing the transverse power of the beam, P��t� �

R
jE j2 d �r ,

which is preserved along z at each given instant.
We have numerically integrated the model equations (1)

and (2) for the input power Pin � 1.25Pcr and initial den-
sity r0 � 0. The numerical scheme for solving (1) was
elaborated on a Crank-Nicholson implicit method applied
to each transverse slice along time. The density equation
(2) was resolved at each position �r , z� by an adaptive
time-step Runge-Kutta method, ensuring a relative error
smaller than 1023. Only steps coinciding with the grid
points used to integrate Eq. (1) were retained in the cou-
pling. By varying the resolution, the simulations revealed
identical features, up to small-amplitude oscillations that
we ignore. The results are plotted in Fig. 1. Figure 1(a)
shows the maximum-in-time intensity of the pulse cen-
tered at r � 0 along the z axis. It displays the forma-
tion of a plateau, which remains clamped to around the
same maximum value beyond z0 � 4 m. A similar be-
havior was earlier discovered in [1], which was interpreted
in terms of self-channeling issued from the balance be-
tween Kerr focusing and a static decrease of the optical
index caused by the electron plasma. Nonetheless, the
pulse dynamics detailed below appears to be more com-
plex. Indeed, Fig. 1(b) shows that the on-axis fluence dis-
tribution F�z� �

R
jE �t�j2 dt does not remain fixed, but

instead increases up to a nonlinear focus at z � 5 m, then
decreases to a value comparable with the incident fluence
at z � 10 m. The pulse radius measured as the width
1004
FIG. 1. Dynamics of Gaussian beam with Pin � 1.25Pcr:
(a) Maximum-in-time intensity, (b) fluence, (c) beam radius,
and (d) maximum-in-time density, all measured on axis r � 0.

at half-maximum of the fluence distribution remains quite
steady, as shown in Fig. 1(c). It becomes almost uniform
at large z and emphasizes the formation of a long wave-
guide. Finally the maximum density profile is illustrated
in Fig. 1(d), where the ionization front holds a nearly con-
stant level over 8 m, then slowly decreases afterwards. As
a result, the total propagation domain exceeds 60 m, i.e.,
more than 15 Rayleigh lengths.

Two stages can clearly be distinguished in the propaga-
tion. First, the optical Kerr effect focuses the pulse, until
the beam intensity becomes sufficiently large to excite
the electron density. Second, a light guide forms and
propagates over long distances, by being coupled with a
significant electron density level. During this stage the
electron plasma defocuses the trail of the pulse and
strongly shortens its leading edge around and beyond
the nonlinear focus. At larger z, we can expect that the
pulse may ultimately diffract as r decreases to zero.
Figure 2 shows the stabilization of the radial distribution
in the pulse intensity [Fig. 2(a)] and the distortions
undergone by the temporal profile of the pulse at four
different propagation distances [Figs. 2(b)–2(e)]. These
results provide evidence that, after the nonlinear fo-
cus, the beam does relax to a transverse shape almost
stabilized in the diffraction plane and thus exhibits a
structure resembling a spatial soliton. Temporally, the
pulse becomes localized at times close to t � 260 fs.
Compared with earlier propagation, we also observe
that near this instant the deformations in the temporal
profile are quasistationary, although the pulse still slowly
moves back in time. On the whole, beyond the nonlinear
focus, the leading part of the pulse becomes very spiky
with limited amplitude and undergoes sharp temporal
gradients. In contrast, the trailing part is totally depleted
by the electron plasma. This spiky structure persists in the
vicinity of the transverse slice of time that contains exactly
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FIG. 2. (a) Radial beam intensity profile I � jE j2 vs �r , z�
at times tmax, for which the pulse amplitude is maximum.
Temporal distributions jE j2 vs t at the propagation distances
(b) z � 4 m, (c) z � 8 m, (d) z � 40 m, and (e) z � 60 m.

the critical power for self-focusing at z � 0, i.e., t� �
2�ln

p
Pin�Pcr �1�2tp � 257 fs.

To justify these observations, we rescale Eqs. (1)
and (2) with the substitutions z ! 4z0z, r ! w0r ,
t ! tpt, r ! ratr, E !

p
2Pin�pw2

0 E , and intro-
duce the constants a � 8Pin�Pcr, b � k2

0w2
0rat�rc, and

c � stp�2Pcr�pw2
0�K for notational convenience. Ex-

pressed in these dimensionless units, localized wave fields
E have a mean-square radius, 	r2
 � P21

�

R
r2jE j2 d �r ,

satisfying the identity [10]

≠2
z	r2
 �

4
P�

Z
�2j �=�Ej2 2 ajE j4

2 bjE j2 �r ? �=�r� d �r . (3)

For a density profile decreasing from r � 0, this equation
indicates that at sufficient powers the self-focusing process
described by the decrease of 	r2
 is stopped as r strongly
increases with jE j. We then perform the self-similarlike
transformation

E �r , t, z� �
f�j, t, z �

R�z, t�
eilz1iRzRj2�4, (4)

where j � r�R�z, t�, z �
Rz

0 du�R2�u, t�, and the pa-
rameter l . 0 assures us that f vanishes at infinity like
a discrete NLS eigenmode. Here R�z, t� denotes the av-
erage radius of the wave field varying both in time and
along z. For self-focusing beams, we assume that f be-
haves self-similarly with ≠z f ! 0 and is close to a real
profile function. Under these assumptions, we plug (4) into
Eq. (3) and obtain

V
4

R3Rzz � X 2
aY
2

2
bR2

2

Z
jfj2 �j ? �=jr d �j , (5)

where ≠tr � c�Pin�Pcr�K jfj2K�R2K , X �
R
j �=jfj2 d �j,

Y �
R
jfj4 d �j, V �

R
j2jfj2 d �j, and �=j means differ-

entiation with respect to j. Equation (5) shows that the
pulse tends to collapse with R ! 0 and Rzz , 0, as long
as 4PinY�XPcr . 1. However, collapse is arrested by MPI
as the integal term of (5), scaling as R222K , is negative.
More precisely, since f has a temporal component, the
electron density r first defocuses the transverse slices of
highest peak power and thus shortens the pulse duration,
which thereby leads to Rt�R , 0.

We can then determine the conditions under which a
self-guided beam may be realized with a radius reaching a
steady-state value, Rzz ! 0. To this aim, we first multiply
Eq. (1) by the complex conjugates of E and t≠tE , and
combine the real parts of the results that we integrate over
space and in time between 0 and infinity. After inserting
Eq. (4) where ≠z f ! 0 and canceling the z derivatives of
R�z, t�, we find the relation

Z 1`

0

(
aY
2

1 t

"
bc

R2K22

µ
Pin

Pcr

∂K

3
Z

jfj2K12 d �j 2 4lP�
Rt

R

#)
dt
R2 � 0 ,

(6)

which shows that a steady-state light guide can exist at
negative times only. Next, the time coordinate towards
which the pulse converges is estimated by means of Eq. (5)
in the framework of a variational approach, which is known
to reproduce the qualitative behaviors of the beam [10].
Let us consider the trial function f�j, t� �

p
I�t� e2j2�2

with I�t� �
1
2e22t2

and R�0, t� � 1�
p

2 that fits the inci-
dent Gaussian pulse at z � 0. In the light of Fig. 2, we
suppose that as Rzz ! 0 the variations in time of R�z, t�
are slow and negligible compared with the exponential
decrease of I�t�, i.e., R�z, t� ~

p
	r2
 is almost frozen in

time with Rt�R ø It�I . Equation (5) then provides the
variational estimateZ t

2`
e22Kt02 dt0 �

�Pin�Pcr�e22t2
2 1

b�Pin�Pcr�KR222K
, (7)

with b � Kbc�2K �K 1 1�2. From Eqs. (6) and (7),
steady-state solutions can exist only at times close
to t � t� � 2�ln

p
Pin�Pcr �1�2 in units tp , which

agrees with the numerical results. This estimate can
be refined by choosing a trial function different from
Gaussian, as, e.g., the NLS ground-state solution to
2f0 1 Djf0 1 f

3
0 � 0 having the lowest power for

collapse
R

f
2
0 d �j � 11.7. This amounts to introducing
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the ratio 4p�11.7 in front of Pin�Pcr [10], which provides
the enhanced moment t� � 265 fs. This instant is in
better agreement with Fig. 2(e), and it locates the slice
containing exactly the minimum bound of power for
self-focusing.

We observe that if the beam size reached a strictly
constant-in-time equilibrium radius Req [≠zReq �
≠tReq � 0], the above relations would characterize non-
linear ground states for Eq. (1), defined in the standard
form E �r , t, z� � f�r, t�eilz , with f decaying to zero
at infinity. Therefore, although the temporal shape of the
pulse can here slowly move under the limit Rzz ! 0, we
term these new objects as “gas-induced solitons.” Previ-
ous analytical investigations based on similar variational
methods [7] already suggested the possibility of producing
stable solitons, resulting from the nonlinear saturation of
the Kerr response in the radial plane by MPI. However,
the inner temporal dynamics of the beam was disregarded
in Ref. [7], and these structures were believed to exist
around the central slice t � 0.

Let us now discuss the influence of normal GVD, as the
pulse becomes so shrunk in the time direction, that the NLS
model (1) must include refinements from the basic parax-
ial description of the optical self-focusing. Among those,
we select only GVD contributions, which become relevant
as the pulse shape attains durations below 10 fs. GVD can
formally be taken into account by adding 2k0k00≠2

tE into
Eq. (1). In the absence of MPI, this term arrests the col-
lapse near the slice t � 0 of strongest power and splits
the beam into two symmetric spikes [14]. In contrast,
MPI tends to defocus the trailing pulse and forms a nar-
row leading spike only. Figure 3 shows the influence of
GVD for different values of k00, at different propagation
distances between one and two Rayleigh lengths. For a
strong dispersion coefficient, k00 � 2.0 fs2�cm, the beam
splits and disperses before MPI becomes a key player.
Conversely, at the lower value k00 � 0.2 fs2�cm, which is
commonly accepted by experimentalists for infrared pulses
in air [15], MPI takes over GVD. So, even though GVD
surely alters the full development of gas-induced soli-
tons, the early stages in their formation can play an im-
portant role in the self-guiding of light, at least over the
first Rayleigh lengths. In this regard, it is worth noticing
that Fig. 1(c) shows the reduction of the beam diameter
to around 1�20 times its input value (2 mm). With an
energy Ein �

R
P��t� dt � 0.85 mJ, a filament of about

100 mm diameter then emerges. These data are in a re-
markable agreement with the size (80 100 mm) and en-
ergy (0.7–1 mJ) measurements of filaments generically
observed in experiments [1–3].

In conclusion, we have identified the nonlinear wave-
guide mode to which light waves coupled with a MPI
source evolve when they propagate through the atmo-
sphere. In particular, we have emphasized the peculiar
nature of the temporal distribution of these new objects,
termed as gas-induced solitons. Such structures exhibit
1006
FIG. 3. Temporal intensity profiles at center r � 0 for propa-
gation distances #2z0 and different GVD coefficients: (a) k00 �
0, z � 5 m, (b) k00 � 0.2 fs2�cm, z � 5.1 m, (c) k00 � 0.8 fs2�
cm, z � 6 m, (d) k00 � 2 fs2�cm, z � 7 m.

a single leading peak located at negative instants and
a quasistable transverse distribution. Although self-
compressing in time, they are capable of sustaining a
long propagation covering here more than 60 m. Thus,
multiphoton ionization provides a key mechanism that
does not only regularize the collapse, but also makes
self-guided pulses rather robust in gases. Further studies
should concern the fate of these solitonlike waveguides
in the presence of second-order temporal deviations from
the time-envelope approximation [16] and of delayed Kerr
components [13].
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