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Resumming Long-Distance Contributions to the QCD Pressure
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The strict coupling constant expansion for the free energy of hot QCD plasma shows bad convergence
at all reasonable temperatures, and does not agree well with its 4D lattice determination. This has recently
led to various refined resummations, whereby the agreement with the lattice result should improve, at the
cost of a loss of a formal agreement with the coupling constant expansion and particularly with its large
infrared sensitive “long-distance” contributions. We show here how to resum the dominant long-distance
effects by using a 3D effective field theory, and determine their magnitude by simple lattice Monte Carlo
simulations.
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Introduction.—At temperatures above 200 MeV, the
properties of matter described by the laws of QCD are
expected to change. The system should look more like a
collection of free quarks and gluons than a collection of
their bound states, such as mesons. It is a challenge to find
observables which would clearly manifest this change,
and hopefully also be directly or indirectly measurable in
heavy ion collision experiments.

From the theoretical point of view, one of the simplest
observables witnessing the change is the free energy of
the plasma, or its pressure [1]. Indeed, according to the
Stefan-Boltzmann law, the value of the free energy counts
the number of light elementary excitations in the plasma,
be they quarks and gluons, or mesons.

The reality is somewhat more complicated. Interactions
change the Stefan-Boltzmann law, so that pressure is no
longer proportional to the number of degrees of freedom.
And in fact, interactions are strong. An explicit compu-
tation of the free energy to order O �g5T4� [2–4] shows
that there are large corrections, with alternating signs, such
that convergence is poor at any reasonable temperature. Of
course, at least without light dynamical fermions, the full
pressure can still be obtained with 4D finite temperature
lattice simulations [1]. However, in order to really under-
stand the properties of the QCD plasma phase, one should
also have some analytical understanding of the origin of
this result.

A way of at least understanding why the convergence
is poor is the observation that, when as � g2��4p� ø 1,
the system undergoes dimensional reduction [4–9], and its
static long wavelength “soft” or “light” degrees of freedom
can be described by a three-dimensional (3D) effective
field theory,

L3D �
1
2 TrF2

ij 1 Tr�Di , A0�2 1 m2
D TrA2

0 1 lA�TrA2
0�2,

where m2
D � g2T2, lA � g4T are parameters computed

perturbatively up to optimized next-to-leading-order level
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(see below). This effective theory is confining, and there-
fore nonperturbative [10,11]. In [4], L3D was used to re-
produce the perturbative free energy up to order O �g5T4�
[2,3], and the bad convergence was shown to be due pre-
cisely to these degrees of freedom.

Our objective here is to study the free energy of QCD
by including the dominant, badly convergent contributions
from L3D nonperturbatively, to all orders, by using lattice
Monte Carlo simulations. In this way, we can find out
how important the combined effect of the badly convergent
series really is in the free energy.

It is important to keep in mind that infrared sensitive ef-
fects can be different in various quantities. For instance,
the free energy is dominated by ultraviolet degrees of free-
dom, and the long-distance effects we study here may turn
out to be subdominant. Thus it would be wrong to con-
clude that any approach which manages to reproduce the
numerical data for the free energy in a satisfactory way
would also reproduce other quantities. A good testing
ground for this is the longest static correlation lengths in
the QCD plasma: they are fully nonperturbative, but it is
already known that the results of 4D simulations [12] are
reproduced precisely by the infrared degrees of freedom
that we employ in L3D [6,9,13].

The relation of our approach to the other recent ap-
proaches for the determination of the free energy of QCD
[14–16] can be described as follows. At present, these
approaches do not reproduce the known O �g5T4� result
in the limit of a weak coupling, nor do they account for
any genuine nonperturbative contributions. Thus large
infrared effects are suppressed without an a priori justifi-
cation; the justification comes a posteriori through the rea-
sonable agreement with numerical data. Our results here
attempt to provide a theoretical understanding of why the
long-distance contributions need not be important in the
QCD pressure.

Method.—The pressure or the free energy density of
QCD is a quantity which formally gets contributions
© 2000 The American Physical Society
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from both short-distance physics �l & �pT �21� and long-
distance physics �l * �gT �21�. The separation of the free
energy into these two different types of contributions was
discussed in detail in [4]. Interactions between the short-
and long-distance modes account for the parameters of the
effective long-distance theory L3D, and in addition there
is an additive part coming directly from the short-distance
modes, as we will presently specify.

To describe the effects of the short-distance modes in
detail, we find it useful to introduce the dimensionless pa-
rameters y � m2

D�g4
3 , x � lA�g2

3, where g2
3 is the gauge

coupling within the effective theory. In terms of the physi-
cal parameters T , LMS of QCD, next-to-leading-order
“fastest apparent convergence” optimized perturbation
theory tells that [9] (for a number of flavors, Nf � 0, and
colors, Nc � 3),

g2
3

T
�

8p2

11 ln�6.742T�LMS�
, (1)

x �
3

11 ln�5.371T�LMS�
, y �

3
8p2x

1
9

16p2 .

(2)

The result of [4], Eq. (36), can now be expressed as
follows. Using the MS scheme with the scale parameter
m3D, let us compute the dimensionless quantity

FMS�x, y� � 2
1

Vg6
3

ln

∑Z
DA exp

µ
2

Z
d3x L3D

∂∏
,

(3)

where V is the volume. The pressure can then be expressed
as (we have here again put Nf � 0, Nc � 3)
p�T � � p0�T � 3

∑
1 2

5
2

x 2
45

8p2

µ
g2

3

T

∂3

3

µ
FMS�x, y� 2 24

y
�4p�2 ln

m3D

T

∂∏
,

(4)

where p0�T � � �p2T4�45� �N2
c 2 1 1 �7�4�NcNf� is the

noninteracting Stefan-Boltzmann result. The m3D depen-
dence here is canceled by that in FMS�x, y�.

A few comments on Eq. (4) are in order. First, the term
proportional to y could also be written as �O �x2�, and at
the present level of accuracy there is no unique way of
making a distinction. We have chosen the present form
because the relatively large logarithmic term is then dealt
with in connection with FMS, whereby cancellations occur.
Second, strictly speaking, ln�m3D�T � should be replaced
with ln�m3D�T � 1 d, but d � gE 2 ln2 2 41�2160 2

�17�72� ln2p 2 �37�36� �lnz �0�2� 1 �19�72� �lnz �0�4� �
1.35 3 1024 can be ignored for all practical purposes.
Finally, with the expressions available at present, the
relation in Eq. (4) has an error starting at order O �g6�,
corresponding to O �1��4p�4� within the parentheses.
This correction is, however, from short-distance physics
alone, and we shall ignore it here.

By using Eqs. (1), (2), and (4), the perturbative short-
distance contribution to the pressure has been accounted
for to a satisfactory level, and we are left with evaluating
the long-distance part, FMS�x, y�. The perturbative expres-
sion for FMS�x, y� is known up to the 3-loop level, cor-
responding to O �g5T 4� accuracy in p�T �. Adding terms
involving the scalar self-interaction x to the result of [4],
we can write
FMS�x, y�
dA

�
y3�2

4p

∑
2

1
3

∏
1

y
�4p�2

∑
CA

µ
3
4

2
1
2

ln4y 1 ln
m3D

g2
3

∂
1

dA 1 2
4

x

∏

1
y1�2

�4p�3

∑
C2

A

µ
89
24

2
11
6

ln2 1
p2

6

∂
2 CA

dA 1 2
2

µ
1
2

2 ln4y

∂
x 1

dA 1 2
2

µ
10 2 dA

4
2 ln16y

∂
x2

∏

1
DFMS�x, y�

dA
, (5)
where dA � N2
c 2 1, CA � Nc, and DFMS�x, y� accounts

for the higher-order corrections. In terms of the 4D cou-
pling constant, all contributions involving x in Eq. (5) are
of order O �g6� or higher, while the terms �y3�2, y lny,
y1�2 are of orders g3, g4 ln�1�g�, g5, respectively.

As is well known [2–4], the convergence of the pertur-
bative expansion in Eq. (5) is quite poor when values of
x, y corresponding to any reasonable physical temperature
T�LMS are chosen. For future reference, we illustrate this
in Fig. 1. We have used Eqs. (1), (2), and (4) together with
terms up to order y1�2 in Eq. (5).

The idea of our approach of improving the determination
of FMS�x, y� is the following. We write

DFMS�x, y� � DFMS�x0, y0�

1
Z y

y0

dy

µ
≠DFMS

≠y
1

dx
dy

≠DFMS

≠x

∂
, (6)
where y � y�x� is defined in Eq. (2). The partial deriva-
tives are now given by adjoint Higgs field condensates:

≠DFMS

≠y
�

ø
TrA2

0

g2
3

¿
MS

2

ø
TrA2

0

g2
3

¿
MS,pert

, (7)

where �TrA2
0�g2

3	MS,pert is the perturbative result up to
O � y21�2�, obtained by taking a derivative of Eq. (5) with
respect to y. In the case of ≠DFMS�≠x, a similar relation
is obtained but with the condensate ��TrA2

0�2	.
On the other hand, with a computation in lattice

perturbation theory, a condensate measured in lattice
Monte Carlo simulations can be related to the conden-
sates �TrA2

0	MS, ��TrA2
0�2	MS. Because of the super-

renormalizable nature of L3D, such analytical relations
can be computed exactly near the continuum limit [17,18].
11
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FIG. 1. The pressure in Eq. (4), with the long-distance part
from Eq. (5) included in various loop orders. The 4D lattice
results are from the first reference in [1]. It should be noted
that they have a normalization ambiguity at low temperatures
T & Tc allowing for a small shift of the curve.

Thus, we need to evaluate the condensates on the lattice,
transform the result to the MS scheme, and perform finally
the integration in Eq. (6) numerically. When added to
DFMS�x0, y0�, we obtain a nonperturbative result, which
we can plug into Eq. (4).

What remains is to determine the integration constant
DFMS�x0, y0�. The idea is that, despite the bad conver-
gence shown in Fig. 1, at high enough temperatures the
form of DFMS�x0, y0� is known. Indeed, inspecting the
general structure of Eq. (5), we know that

DFMS�x0, y0� �
e0

�4p�4 dAC3
A

∑
1 1 O

µ
x0

CA
,

CA

4py
1�2
0

∂∏
.

(8)
Here e0, containing an unknown logarithmic depen-
dence on y0, represents the famous nonperturbative
O �g6T4� term [10]. Suppose now that we choose
T 
 T0 � 1011LMS, corresponding to x0 � 1.0 3 1022,
y0 � 3.86. Then the higher-order terms in Eq. (8) are
expected to be subdominant, since CA��4py

1�2
0 � � 0.1

and x0�CA � 0.01, and we only need to know e0.
The main error sources of this nonperturbative and un-

ambiguous setup are as follows.
(a) Even though, in principle, an independent nonper-

turbative determination of e0 is possible, for instance, by
measuring the condensate �TrF2

ij	 along the lines in [19],
doing this systematically requires a 4-loop computation in
lattice perturbation theory, and this is beyond our scope
here. Therefore we will treat e0 as a free integration con-
stant whose magnitude will be fixed below.

(b) Because of the smallness of x�CA, we will also
ignore here the term arising from ≠DFMS�≠x in Eq. (6).

(c) The numerical procedure introduces small statistical
errors, as well as systematic errors, from the extrapolations
to the infinite volume and continuum limits.

(d) Finally, we should of course remember that the ef-
fective theory L3D loses its accuracy when higher-order
12
operators, not included, become important. In fact, for
Nf � 0 the QCD phase transition is related to the so-called
Z�3� symmetry [11,20], and this symmetry is not fully re-
produced by L3D [9,21] without all of the higher-order
operators. There are many indications, however, that the
effective theory should be rather accurate down to low tem-
peratures, T � 2Tc [6,9,13]. Below that, some other ef-
fective description may apply (see, e.g., [22]).

Numerical results.—After this background, we show
in Fig. 2 the difference in Eq. (7), measured with lattice
simulations. This result is then used in Eq. (6) to obtain
DFMS�x, y�. When added to Eqs. (4) and (5), we obtain
Fig. 3. As discussed above, the boundary value at (almost)
infinite temperature, determined by e0, is for the moment
a free parameter.

We observe that at low temperatures the outcome de-
pends strongly on the value of e0. The correct value would
appear to be e0 � 10.0 6 2.0. Even then, the present re-
sults lose their accuracy at T � 5Tc, but seem to work well
above this. Exploiting the full power of the dimensionally
reduced theory down to its limit T � 2Tc would also ne-
cessitate the inclusion of ��TrA2

0�2	.
Discussion.— In 4D lattice simulations, there is a (nu-

merically small) ambiguity in the determination of the
pressure, because only pressure differences can be mea-
sured, and thus an integration constant has to be specified
at low temperatures in a nonperturbative regime. Here we
fix the integration constant by starting from the opposite
direction, from very high temperatures. This allows us to
determine all quantities in terms of T�LMS and the num-
ber of fermion flavors, without ambiguities. We can also
address a huge range of temperatures, unlike 4D simula-
tions which can only go up to T � a few 3 Tc.

The result of our procedure is summarized by
Eqs. (4)–(7) and Fig. 3. We draw two important conclu-
sions. The first is that the outcome depends strongly on
the nonperturbative contribution of order O �g6T 4� [10],
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FIG. 2. The difference in Eq. (7). Here bG � 6��g2
3a�, where

a is the lattice spacing, and the continuum limit corresponds to
the extrapolation bG ! `.
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FIG. 3. The pressure after the inclusion of DFMS�x, y� from
Eq. (6). Statistical errors are shown only for e0 � 10.

as can be observed from the e0 dependence in Fig. 3.
The value of e0 could, in principle, be determined by a
well-defined procedure, although in practice it is a project
of considerable technical complication. But our present
study provides an estimate for what the result should be.
The order of magnitude O �10� seems reasonable, since
it is known from other contexts such as the Debye mass
[13] that nonperturbative constants tend to be large.

The second is that, when the large nonperturbative
O �g6T4� term is summed together with the set of all
higher-order terms determined via �TrA2

0	, then these
long-distance contributions almost cancel at T * 30LMS.
Indeed, the sum, the curve with e0 � 10 in Fig. 3, does
not differ much from the term O � y1�2� in Fig. 1. For
smaller temperatures, 5LMS & T & 30LMS, on the other
hand, only our numerical results are trustworthy.

Finally, we also find that, although the dependence on
the effective scalar self-coupling x is of high perturbative
order, in practice it is expected to play a role as one ap-
proaches Tc. Its contribution can be obtained from the
condensate ��TrA2

0�2	. To relate this to the MS scheme re-
quires again a perturbative 4-loop computation.

Let us end with a philosophical note. When one wants
to understand 4D simulation results, one could argue that
one should aim at almost fully analytical resummations
[14–16]. However, we suspect that these are unavoid-
ably specific for the particular observable considered: they
may work for the entropy or pressure because the result
is short-distance dominated, but would fail, for instance,
for Debye screening where long-distance effects are domi-
nant. It seems to us that it may ultimately be more useful
to obtain a unified understanding of the relevant degrees of
freedom in the system, even if some observables have to
be evaluated numerically.
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