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Preserving High Multibunch Luminosity in Linear Colliders
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An analytic theory of cumulative multibunch beam breakup in linear colliders is developed. Included
is a linear variation of transverse focusing across the bunch train as might be applied, e.g., by chirping
the radio frequency power sources or by using radio frequency quadrupole magnets. The focusing varia-
tion saturates the exponential growth of the beam breakup and establishes an algebraic decay of the
transverse bunch displacement versus bunch number. A closed-form expression for the transverse bunch
displacement is developed. It is used to quantify the total normalized emittance and thereby isolate the
region of parameter space corresponding to high multibunch luminosity.

PACS numbers: 29.27.Bd, 41.75.Fr
To be useful for high-energy physics, an e1e2 linear
collider must deliver high-energy, high-luminosity
beams to the interaction point. The luminosity scales
as Pb��Eb ˜́

1�2
y � [1], in which Pb , Eb , and ˜́ y denote

the e1e2 beams’ power, energy, and root-mean-square
normalized vertical emittance, respectively. Consequently,
attaining the required high luminosity involves rigorously
controlling the quality of high-current beams. This is
especially true concerning ˜́ y . For example, the Next
Linear Collider (NLC) design comprises two main linear
accelerators (linacs), one for e1 and one for e2, each
delivering a flat 1 TeV beam, with horizontal and vertical
emittances ˜́ x � 4 mm and ˜́ y � 0.1 mm, respectively
[2]. The linacs are long ��10 km� in order to achieve the
high final energy, and concern over beam instabilities is
correspondingly heightened.

One worrisome instability is that due to cumulative
multibunch beam breakup (BBU). It arises from beam-
excited transverse wakes in the accelerating radio fre-
quency (rf) cavities. Specifically, an imperfectly injected
initial bunch excites one or more deflecting modes in
the first rf cavity, which then deflect trailing bunches
by amounts that depend on their phases relative to the
deflecting modes. Trailing bunches that are deflected
farther away from the beam axis can couple more strongly
to these modes in downstream cavities so that the influ-
ence of the deflecting modes on the bunch train grows
as it moves down the linac. The instability is thereby
“cumulative,” and it is “multibunch” in the sense that
leading bunches influence trailing bunches by way of
the deflecting wake. The bunch train exiting the linac
is transversely enlarged; its projected emittance (and
therefore luminosity) is degraded.

Continuing with the NLC as an example, the main
linacs each consist of several thousand accelerating X-band
(11.424 GHz) cells. The cells are assembled into arrays
of 206-cell rounded damped detuned structures (RDDS)
[3], specially designed to keep long-range transverse wakes
small, so that the RDDS is effectively the “fundamental”
accelerating unit of the linac. A prototypical RDDS wake
amplitude is illustrated in Fig. 1. It arises from a distribu-
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tion of deflecting modes. To a reasonable approximation
the wake may be modeled as a single deflecting dipole
mode of representative angular frequency v, nominally
the center frequency in the distribution (about 15 GHz for
Fig. 1), and representative quality factor Q. The NLC
bunch train consists of 90 bunches spaced t � 2.8 ns
apart and is therefore about 250 ns long. Thus, the effec-
tive Q is infinite over most of the bunch train, though the
wake does fall off during the tail. In keeping with Fig. 1,
the following development is based on a single deflecting
dipole mode representative of that found not in a single
rf cell, but rather in a complete RDDS. Specifically, the
wake is taken to be w�z � � w0Q�z �e2z�2Q sinz , in which
w0 is the wake amplitude, Q�z � is the unit step function,
and z�v � t 2 s�c is the time measured after the arrival
of the first bunch at position s along the linac. One can-
not purposely zero the deflecting-wake kick by putting the
bunches at wake zero crossings because RDDS disallows
actively adjusting a deflecting mode to make its frequency
a multiple of the accelerating-mode frequency.

In a “continuum approximation” in which the discrete
transverse kicks imparted by the rf structures are smoothed
along the linac, the equation of transverse motion is [4]

FIG. 1. Amplitude of deflecting wake in a prototypical RDDS.
This plot is representative; the amplitude is sensitively dependent
on construction tolerances and higher-order-mode outcoupling.
It can be lower or higher than indicated here.
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Here, s � s�L denotes location along the linac normal-
ized to the total linac length L , i.e., 0 # s # 1; k is the
net transverse focusing wave number multiplied by L ; x is
the transverse displacement of the beam centroid from the
axis; F�z � � I�z ��Ī is a form factor involving the current
I�z � and its time average Ī; and e � w0qeL 2��gmc2vt�
is the dimensionless BBU coupling strength, in which q
denotes the bunch charge, and e and gmc2 denote the
electron charge and total energy, respectively. Table I lists
nominal linear-collider parameters, inputs we use for nu-
merical examples.

One method for actively mitigating BBU is to vary
the focusing strength along the bunch train [5]. Ide-
ally, this would remove the time dependence so that
x�s, z � ! x�s�, in which case the required focus-
ing strength is [from Eq. (1)] k2�s, z � � k2�s� 1

e�s�
Rz

0 dz 0 w�z 2 z 0�F�z 0�. However, because the wake
varies rapidly, one cannot achieve this requirement in
practice. Instead, by chirping the rf power input to the
cavities, or by using rf-quadrupole magnets, one can affect
a simpler variation, for example, a linear variation in time:
k�s, z � � k�s� 1 k,z �s, 0�z . In detailed simulations
of a contemporary NLC design, Stupakov found that a
small (%-level) linear variation could substantially damp
multibunch BBU [6].

Our principal goal here is analytically to quantify and
explain the benefit of a linear focusing variation. After
summarizing the procedure for solving Eq. (1), we write
a closed-form solution for the transverse displacement,
use it to calculate the total emittance, and then use the
emittance to isolate the region of parameter space corre-
sponding to viable linear-collider designs. In developing
the solution we incorporate approximations appropriate
to a linear-collider design: zero-length (d-function)
bunches, adiabatic variation of parameters along the linac,
and strong focusing. Specifically, we take the dependence
of focusing strength on beam energy to be k ~ g21�2,
a good model for the NLC lattice and one that lends
itself to analytic treatment. The first step is to rewrite
Eq. (1) in terms of a “chirp-modified” wake. With a
new variable j�s, z � �

p
g�s� x�s, z �e2izD�s�, wherein

D�s� �
Rs

0 ds0 k,z �s0, 0�, and, with strong focusing,
Eq. (1) takes a spatially harmonic form:∑

≠2

≠s2 1 k2�s�
∏
j�s, z � � e�s�

Z z

0
dz 0 wD�s, z 2 z 0�

3 F�z 0�j�s, z 0� , (2)

the chirp-modified wake being wD�s, z � � w�z �e2izD�s�.
This is an “eikonal approximation” [7] with a subtlety:
if the focusing chirp were established through an energy
spread, then g�s� ! g�s, z �, and a factor g21�2�s, z 0�
would be trapped in the integration over z 0. Taking this
factor out of the integral then makes Eq. (2) only a model,
but one consistent with strong focusing in the sense that
the desired energy spread will be commensurate with e,
a quantity that is small compared to k2. Noting that wD

introduces a complex effective Q, namely, �2Qeff�21 �
�2Q�21 1 iD, one sees immediately that the chirp is im-
portant if Q is high, but is masked (and not needed) if Q
is sufficiently low.

A formal solution for j�s, z �, and in turn for the dis-
placement xM�s� � x�s, z � Mvt� of the Mth bunch,
is obtained by Fourier transforming Eq. (2) in time, solv-
ing the transformed equation with the WKBJ method as is
appropriate for adiabaticity, and Fourier inverting the so-
lution [4,8]:
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is an auxiliary function reflecting the coupling between the bunch spacing and the deflecting-mode frequency, andΩ
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are cosinelike and sinelike functionals, respectively. The
algebraic sign of D�s� affects only the phase of xM�s�;
that this is so can be seen from Eq. (3) upon taking u !
2u and remembering that xM is real. For the envelope
bounding the tranverse amplitudes, the effect of a linear in-
crease in focusing from head to tail is the same as a linear
decrease. Moreover, with k ~ g21�2 and e ~ g21, it is
easy to treat arbitrary acceleration, viz., arbitrary g�s�.
The injection offsets xM�0� and angles x0

M�0� are also ar-
bitrary; what follows applies, for concreteness, to a mis-
aligned beam for which xM�0� � x0 and x0

M�0� � 0 for
every bunch M.

We decompose the sum in Eq. (3) into two parts:
PM

0 �P`
0 2

P`
M . The first part pertains to the “steady-state”

displacement xss that would arise were the deflecting wake
first seeded with an infinitely long bunch train immediately
preceding the actual bunch train. Given strong focusing,
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TABLE I. Nominal top-level linear-collider design parameters.

Parameter Value

Total initial energy Ei � g�0�mc2 10 GeV
Total final energy Ef � g�1�mc2 1 TeV

Linac length L 10 km
k̄ � 2p 3 total number of betatron periods 2p 3 100

Bunch charge q 1 nC
Number of bunches in train M 90

Bunch spacing t 2.8 ns
Deflecting-mode angular frequency v 2p 3 14.95 GHz

Deflecting-mode quality factor Q `

Wake amplitude w0 1 V pC21 mm21 m21
the steady-state displacement is

xss�s, Mvt� � x0

∑
g�0�
g�s�

∏1�4

3 cos

∑
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0
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∏
.

(6)

A nonzero focusing variation establishes a harmonic de-
pendence of xss on M. The second part pertains to the
“transient” displacement dxM � xM 2 xss. Saddle-point
integration, done by closely following the procedure de-
tailed in Ref. [4], gives a closed-form solution for dxM, the
form of which depends on the region of parameter space
under consideration. For parameters relevant to a linear
collider, the bounding envelope of dxM takes the form

jdxMj

x0
�
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The auxiliary relations comprising Eq. (7) are
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in which k̄ is the focusing strength averaged over the linac;
M is the total number of bunches in the train; j fgj is the
magnitude of the total fractional energy spread across the
bunch, or twice the total fractional focusing variation, and
is constant along the linac; and the second equality for the
generalized spatial coordinate S pertains to constant ac-
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celeration for which g ~ s, the case we use for numerical
examples.

Figure 2 illustrates good agreement between the enve-
lope calculated analytically from Eq. (7) and bunch dis-
placements calculated numerically from Eq. (1). We also
numerically solved a discrete version of Eq. (1) in which
the cavities and focusing elements are localized entities;
the solution overlaps that of Fig. 2. In addition, we consid-
ered separately the cases of linear variation of the focusing
strength and of the beam energy; again, the numerical solu-
tions closely agree for linear-collider parameters. In turn,
Fig. 2 is a good indicator of the utility of the analytic solu-
tion for quantifying multibunch BBU in a linear collider.

The expression for jdxMj in Eq. (7) reflects a number of
physical processes. The coefficient involving beam energy
manifests adiabatic damping. The factor j sin�vt�2�j is a
relic of a resonance function deriving from the coupling
between the bunch spacing and the deflecting-mode
frequency. Resonances lie near even-order wake zero

FIG. 2. Analytic envelope at the linac exit (solid curve) plot-
ted against the transverse displacement of bunches calculated
numerically. Inputs are per Table I with total energy spreads of
1.5% (top) and 3% (bottom).
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crossings [4]; because the solution is valid only away from
zero crossing, resonance is removed. The focusing varia-
tion represented by j fgj regulates exponential growth,
and finite Q yields exponential damping. An unphysical
artifact of saddle-point integration is also present, namely,
a localized singularity at h � 1. In actuality, jdxM j
varies smoothly through the value provided in Eq. (7)
for h � 1; we analytically continue our plots by hand
through this value. Yet “h � 1” does have special physi-
cal significance: It demarks the onset of saturation of
exponential growth and, with infinite Q, algebraic decay
of the envelope. For h $ 1 the “growth factor” c�h�E is
independent of bunch number M and of linac coordinate
s; “temporal damping” then ensues through a negative
power of M, and “spatial damping” ensues adiabatically
as already mentioned. Therefore h � 1 demarks a global
maximum in the envelope jdxMj. The effect of the
focusing variation is saturation of the exponential growth,
not damping; its action distinctly differs from that of a
real effective Q.

The special significance of h � 1 translates into a crite-
rion for the focusing variation to be effective. Specifically,
one should choose a value of fg that ensures h�1,M � .

1, i.e., that h � 1 is reached somewhere along the bunch
train before it leaves the linac. According to the auxiliary
relations to Eq. (7), the criterion is j fgj . 2E�1,M��k̄.

The steady-state and transient displacements, being
uncorrelated, comprise a measure of the total projected
normalized emittance as ´ � �jxssj

2 1 jdxMj2max�gk�L ,
wherein jxssj � x0�g�0��g�s��1�4 per Eq. (6), and
jdxMjmax is the maximum value of the transient envelope
reached along the bunch train. If h , 1 always, then the
maximum is reached at the last bunch M � M . Other-
wise, the maximum corresponds to the value of jdxMj at
which h � 1. Imposing a focusing variation will reduce
the transient envelope, but it will also establish a harmonic
variation of xss with M and thereby introduce a nonzero
steady-state emittance ´ss. For this reason the quantity
of interest is the ratio �´ 2 ´ss��´ss � �jdxMjmax�jxssj�2.
This quantity, calculated from the analytic expressions
given in Eqs. (6) and (7), is plotted against j fgj in Fig. 3
for various values of w0. Figure 3 points to the region of
parameter space that, respecting multibunch BBU, admits
viable linear-collider designs. In particular it shows that
to achieve low multibunch emittance without aid from
a focusing variation requires small wake amplitudes.
Otherwise, as depicted, a modest energy spread relieves
the constraint on wake amplitude.

In summary, designing a linear collider involves trading
between wake amplitude and energy spread (or focusing
variation). For the NLC, the wake amplitude is ultimately
determined by cell-to-cell coupling in the RDDS, which in
turn relates to achievable fabrication tolerances, and to the
efficacy of its higher-order mode outcoupler. There are, of
FIG. 3. Total normalized transverse multibunch emittance at
the linac exit, referenced to its steady-state value, versus total
energy spread across the bunch train, plotted for various wake
amplitudes. Inputs are per Table I.

course, practical limitations on the energy spread, which
include longitudinal beam requirements at the interaction
point, lattice chromaticity, etc. Nonetheless, introducing a
modest energy spread constitutes a backup in case suffi-
ciently low wake amplitudes prove generally unfeasible.
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