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External Dissipation in Driven Two-Dimensional Turbulence
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Turbulence in a freely suspended soap film is created by electromagnetic forcing and measured by
particle tracking. The velocity fluctuations are shown to be adequately described by the forced Navier-
Stokes equation for an incompressible two-dimensional fluid with a linear drag term to model the fric-
tional coupling to the surrounding air. Using this equation, the energy dissipation rates due to air friction
and the film’s internal viscosity are measured, as is the rate of energy injection from the electromagnetic
forcing. Comparison of these rates demonstrates that the air friction is a significant energy dissipation
mechanism in the system.

PACS numbers: 47.27.Jv
Laboratory fluids used for studying two-dimensional
(2D) turbulence are not isolated. They interact with the
three-dimensional (3D) environment which they are im-
mersed in. This interaction is frictional and causes an
energy leakage to the surroundings. For example, fluid
motion in shallow layers is damped by the bottom of their
containers [1,2]. Likewise, experiments in flowing soap
films suffer from frictional coupling to the surrounding air
[3–6]. Laboratory 2D turbulence thus has two energy dis-
sipation mechanisms; energy can be dissipated by fluid’s
internal viscosity, or it can be bled to the environment by
the frictional effect.

This frictional coupling is not restricted to laboratory
fluids. Geostrophic flows are often modeled as 2D, and
experience a similar coupling to the surface of the earth.
In such flows, the coupling is modeled as a linear (or
Rayleigh) drag term in the 2D Navier-Stokes equation:
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where ui is the ith component of velocity, p is the pres-
sure, r and n are the density and the kinematic viscosity
of the fluid, F is the external force, and a is the Rayleigh
drag coefficient. This description is appealing due to its
simplicity; however, its validity to real fluid dynamic sys-
tems has not been quantitatively tested. The work reported
here establishes that a Rayleigh drag model is adequate to
describe the frictional force of air on a turbulent soap film
that is maintained in a steady state by electromagnetic forc-
ing. Such a soap film will be called an em cell.

Once Eq. (1) is established as consistent with data from
the em cell, it can be used to estimate the rate at which
air draws energy from the turbulence. It is also possible
to measure the energy injection rate due to the em force
and the energy dissipation rate due to the soap film’s inter-
nal viscosity. Since the turbulence in the em cell is in the
steady state, the energy dissipation rates must exactly bal-
ance the energy injection rate. Comparison of the dissipa-
tion rates gives a quantitative measure of the importance of
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air friction on turbulence in the em cell. Finally, the energy
dissipation rates can be used to estimate the length scales
at which dissipation takes place, and comment on energy
and enstrophy flow characteristics of 2D turbulence.

A brief overview of the operation of the em cell is as fol-
lows. A film is drawn from a solution [400 ml water, 40 ml
glycerol, 80 g ammonium chloride salt, 1% by volume liq-
uid detergent (Joy), and a small amount of lycopodium
(mushroom spores)] across an open square frame of area
7 3 7 cm2. Two opposing sides of the square frame are
made of stainless steel, and the remaining sides are plas-
tic. A voltage difference is applied across the stainless steel
sides to drive a current in the plane of the film. The voltage
difference oscillates with a square waveform at 3 Hz. The
film is then placed above an array of rare earth magnets
which are oriented so that their magnetic field lines pierce
the film perpendicularly. The turbulence which results is
then measured by tracking the lycopodium particles. Two
features of the experiment which deserve special attention
are the magnet array and the measurement technique.

The spatial arrangement of the magnets below the film
has profound effects on turbulence. It determines both
the injection scale of turbulence as well as the efficiency
of energy injection. In this experiment, the magnets are
arranged such that the magnetic field varies approximately
sinusoidally along the y axis and remains constant along
the x axis. When an electric current is flowing across the
film in the y direction, as shown in Fig. 1(a), a Lorentz
force is generated which has approximately the following
form: Fx � F0 sin�kyy� and Fy � 0, where ky � 2p�a
with a � 0.6 cm being twice the width of the magnets.
That �F is nondivergent, unidirectional, and translationally
invariant along x̂ will be exploited later in the analysis of
our experimental data.

The velocity fields are measured with a particle track-
ing technique developed specifically for use in the em cell.
It is similar in operation to particle imaging velocimetry
(PIV) used earlier in soap films [5]. Lycopodium par-
ticles in the film are illuminated with a 12 mJ double-
pulse Nd:YAG laser slaved to a CCD camera (8-bit,
768 3 480 rectangular pixels) so that corresponding
© 2000 The American Physical Society
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FIG. 1. (a) Top view of Kolmogorov magnets. The electric
current is in the y direction, and the spatially periodic Lorentz
force is in the x direction. A typical velocity, vorticity, and
pressure field are displayed in (b), (c), and (d), respectively.

pulses straddle camera frames. By tracking individual par-
ticles instead of groups of particles, as in standard PIV,
somewhat higher vector density can be achieved for the
same raw images. However, unlike PIV, the vector fields
generated by particle tracking are not snapped to a grid.
This is not a drawback since the resultant vector fields can
be interpolated to a grid with little sacrifice to large-scale
velocity statistics.

Both the velocity field and the pressure field will be
necessary to show that Eq. (1) adequately describes the
fluid flow in the em cell. The reason for this will be
made clear later. To obtain the pressure field p�x, y�, the
divergence operator is applied to Eq. (1) and the fact that
the force field is nondivergent is used to obtain
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≠x [7]. Using Fourier techniques,
p�x, y� can be obtained for a given velocity field [8].

All data reported in this paper was extracted from a
single run in the em cell with an applied voltage of 40 V
and a current of 40 mA. Using these values and the resistiv-
ity of the bulk fluid, the film thickness, h, is �50 mm [9].
If one invokes the Trapeznikov [10] relationship between
the film thickness and the viscosity, n � nb 1 2hs�rh,
a large h results in n being close to that of the bulk fluid,
nb � 0.01 cm2�s. Recent measurements [11] of the sur-
face viscosity of the surfactant layers, hs, place its value
at �1.5 3 1025 P ? cm , thus yielding the film viscos-
ity n � 0.016 cm2�s. The camera imaged a region of
the fluid which was approximately 6 3 4.5 cm2, of which
the central 4.5 3 4.5 cm2 section was used in the inves-
tigation. The laser flash spacing was 2 ms. Under these
conditions, the film lasted approximately 30 min during
which 1000 vector fields were extracted. Typical veloc-
ity, vorticity, and pressure fields from the run are shown in
Figs. 1(b)–1(d).

Qualitative features of the turbulence are first measured
to determine assumptions that can be made to simplify the
data analysis. For each velocity field, the root-mean-square
velocity urms�t� � � 1

A sA d �xj �u� �x, t�j2�1�2 and average en-
strophy, V�t� � 1

A sA d �x�v� �x, t��2, are calculated. Fig-
ure 2 shows that urms � 11 6 1 cm�s and V � 3000 6

300 s22 throughout the lifetime of the film. It is also pos-
sible to calculate the mean-square divergence of the flow,
D�t� � 1

AV�t�

R
A d �x� �= ? �u� �x, t��2, where D�t� is normal-

ized by V�t� so that it is nondimensional. By this defini-
tion D�t� was found to be independent of time and �11%
of the enstrophy, which is consistent with an earlier mea-
surement in thick soap films [5]. Alternatively, the com-
pressibility of a fluid can be measured in terms of the Mach
number, M � urms�c, where c is the speed of sound waves
in the fluid. For our soap films, the relevant sound speed
is the compressional wave which has c � 200 cm�s [12],
giving M � 0.06 for the em cell. These estimates indicate
that divergence in the system is small, and incompressibil-
ity may be assumed. The fact that urms is approximately
constant in time also implies that the turbulence is in the
steady state.

Directly demonstrating that Eq. (1) governs the time
evolution of the turbulence in the em cell is difficult since
it requires the measurement of a time derivative of a veloc-
ity field. At this time such a measurement is not possible.
Instead, using the assumptions of homogeneity and incom-
pressibility, Eq. (1) can be transformed to a time evolution
equation for the two-point velocity correlation,
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where u and u0 denote the velocities at �x and �x 1 �r ,
respectively, and 	. . .
 is an ensemble average [13].
It should be emphasized that, due to unidirectional
forcing, the pressure-velocity correlation in Eq. (3) can-
not be ignored. This is in contrast to isotropic turbu-
lence for which 	pui
 � 0 [13]. Since the turbulence
is in the steady state, the time derivative in Eq. (3)
may be ignored. For large-scale velocity fluctua-
tions, the viscous term in Eq. (3) is also small, result-
ing in
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Determining that Eq. (4) is consistent with statistics from
the em cell for j�rj greater than some viscous-damping scale
(�d � 250 mm) constitutes an indirect check that Eq. (1)
is an appropriate equation for the dynamics in the em cell.

To simplify the measurements needed to test Eq. (4),
we exploit the symmetries of the external force mentioned
earlier. The fact that �F is unidirectional, lying along the
x̂ direction, means that setting �i, j� � � y, y� in Eq. (4)
eliminates the forcing terms. The remaining terms are av-
eraged over 1000 velocity fields, and the left-hand side
and right-hand side of this equation [denoted by Lyy��r�
and Ryy��r�] are displayed for three different �r cross sec-
tions in Figs. 3(a)–3(c). A least-square algorithm using a

as the free parameter gives a � 0.7 6 0.3 s21. Though
the fit is noisy, Lyy��r� and Ryy��r� are definitely correlated.
The noise may be due to a lack of convergence despite
1000 velocity fields used in the calculation. This is per-
haps not surprising considering that the calculated Lyy��r�
contains derivatives of velocity triple correlations as well
as velocity-pressure correlations. The fact that the data
seems to contain small amplitude oscillations may be a re-
flection of residual inhomogeneity in the system, which
was ignored in the analysis. Figure 3 leaves us with little
doubt that the measurements are consistent with Eq. (4),
showing that the Rayleigh drag term is adequate for mod-
eling air friction on turbulent flowing soap films.

The energy dissipation rates due to viscosity and to air
can now be determined. In the limit r ! 0, half the trace
of Eq. (3) is given by

1
2

≠
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	uiui
 � 2en 1 einj 2 eair , (5)

where einj � 	Fiui
, en � nV, and eair � au2
rms.

The triple velocity correlation terms in Eq. (3) vanish
in the single-point limit. Moreover, incompressibility
combined with the trace operation eliminates the pres-
sure terms. Using the above definitions of the energy
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FIG. 2. The root-mean-square velocity urms�t� (≤) and the en-
strophy V�t� (±) are plotted over a time span of 30 min.
978
dissipation rates, one finds eair � 85 6 35 cm2�s3

and en � 55 6 5 cm2�s3 for turbulence in the em
cell. The system being in the steady state implies that
einj�� en 1 eair � � 140 6 40 cm2�s3.

To ascertain that the measured energy-rate constants
are self-consistent, an independent measurement of einj
is necessary. This was done by exploiting Eq. (4) for
�i, j� � �x, x�. In this equation the force-velocity terms
do not vanish. However, since the force is invariant under
a translation in the x̂ direction, along the ry � 0 cross
section 	F0

xux
 � 	Fxux
 � 	F0
xu0

x
 � 	Fxu0
x
 � einj.
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FIG. 3. Lyy��r� (solid lines) and Ryy��r� (dashed lines) for (a)
�r � �rx , 0�, (b) �r � �0, ry�, and (c) �r � �rx , ry� with rx � ry .



VOLUME 85, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 31 JULY 2000
-4 -2 0 2 4
rx (cm)

-300

-250

-200

-150

-100

-50

0

50

100

150

L xx
,R

xx
(c

m
2 /s

3 )

FIG. 4. Lxx��r� (solid lines) and R0
xx��r� (dashed lines) for

�r � �rx , 0�.

Figure 4 shows this cross section of Lxx��r� and
R0

xx��r� � Rxx��r� 1 	uxF0
x
 1 	u0

xFx
 � 2a	uxu0
x
. It is

evident from this measurement that the R0
xx and Lxx

essentially differ by a constant 2einj � 240 cm2�s3. To
within experimental error, this independently measured
einj agrees with that estimated using energy balance.

These energy rates can now be used to comment on en-
strophy balance in the system. Since 2D turbulence con-
tains no vortex stretching terms, the enstrophy also has a
conservation equation in the steady state. This is given by

binj 2 bair 2 bn � 0 . (6)

Here, binj is the enstrophy injection rate which may be de-
termined in our case by k2

yeinj � binj, where ky � 2p�a
is the injection wavelength. For a � 0.6 cm and
einj � 120 cm2�s3, binj � 1.2 3 104 s23. For the linear
damping, bair � aV �

a

n en � 2400 s23. Enstrophy
conservation therefore dictates bn � 104 s23. It is
clear that unlike energy, the enstrophy is predominantly
dissipated by viscous forces.

Given the dissipation rates, various length scales in the
em cell may be estimated. The largest length scales, or the
outer scale �0, are determined by the balance between the
advection term and the air-damping term in Eq. (1). The
Reynolds number based on the Rayleigh drag may be de-
fined as Reair � urms�a�, which when set equal to unity
yields �0 � 15 cm. This length scale is nearly twice the
size of the em cell, so �0 cannot be directly measured in
this experiment. It also implies that some finite energy
dissipation may occur near the boundaries. The smallest
length scale in the system, or the dissipation scale �d , is
determined by �d � n1�2�b1�6

n , which as mentioned ear-
lier is �250 mm.

These length scales allow for some speculation as to the
directions of energy and enstrophy flow in the em cell. The
current picture of 2D turbulence [14] has energy flowing
from the injection scale (a � 0.6 cm) to larger scales. In
contrast, enstrophy is predicted to flow from the injection
scale to small scales. The data from the em cell supports
this picture. The above dissipation rates suggest that en-
ergy is predominantly drained by air-film coupling. Since
the typical length scale of the air friction is �0 � 15 cm,
much of this dissipation must be happening at scales larger
than the injection scale a � 0.6 cm. Therefore a large por-
tion of the energy must be advected by the turbulence from
the injection scale to larger scales. A similar argument may
be made to show the turbulence advects enstrophy to small
scales.

With the magnitudes of the energy source and dissipa-
tion measured, it is clear that air is a non-negligible energy
sink compared to the viscosity of the film and cannot be ig-
nored. This is somewhat unsatisfying in that one normally
expects an ideal fluid to have no damping other than the
fluid’s internal viscosity. On the other hand, the motion of
energy to large scales in 2D demands that energy be taken
out at some outer scales in order to establish a steady state.
This work demonstrates that air plays such a role and can
be adequately described by the Rayleigh drag term in the
2D Navier-Stokes equation. This finding allows 2D turbu-
lence to be explored in a more quantitative fashion using
the em cell.
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