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Quantized, compact graphs are excellent paradigms for quantum chaos in bounded systems. Connect-
ing them with leads to infinity, we show that they display all the features which characterize quantum
chaotic scattering. We derive exact expressions for the scattering matrix, and an exact trace formula for
the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic
scattering. A statistical analysis of the cross sections and resonance parameters compares well with the
predictions of random matrix theory. Hence, this system is proposed as a convenient tool to study the
generic behavior of chaotic scattering systems and their semiclassical description.

PACS numbers: 05.45.Mt, 03.65.Sq
Quantum graphs provide a very useful tool to study
bounded quantum systems which are chaotic in the classi-
cal limit [1]. Here, by attaching infinite leads we turn the
compact graphs into scattering systems, and show that they
display chaotic scattering [2,3], a phenomenon with appli-
cations in many fields, ranging from nuclear [4], atomic
[5], and molecular [3] physics to mesoscopics [6] and clas-
sical wave scattering [7]. We express the quantum scat-
tering matrix and the trace formula for the density of its
resonances in terms of the orbits of the underlying clas-
sical scattering system. These expressions are the exact
analogs of the corresponding semiclassical approximations
available in the theory of chaotic scattering [2,8,9]. With
these tools we analyze the distribution of resonances and
the statistics of the fluctuating scattering amplitudes and
cross sections. We show that graphs provide new insight
on the connection between random matrix theory (RMT)
and chaotic scattering. Moreover, we illustrate their ad-
vantages as versatile and convenient tools for numerical
studies of chaotic scattering.

Consider first a bounded graph G . It consists of V
vertices connected by bonds. The valency yi of a vertex i
is the number of bonds which emanate from it, and we al-
low only a single bond between any two vertices. The total
number of bonds is B �

1
2

PV
i�1 yi . The bond connecting

the vertices i and j is denoted by b � �i, j�. We shall
also distinguish between the directions on the bond using
b̂ � � j, i� to denote the reverse direction. The length of
the bonds is denoted by Lb and we shall henceforth assume
that they are rationally independent. In the directed-bond
notation Lb � Lb̂ . The scattering graph G̃ is obtained by
adding infinite leads at the vertices of G , changing their
valency to ỹi � yi 1 1. The leads are distinguished by
the index i of the vertex to which they are attached.

The Schrödinger operator on the graph consists of the
one-dimensional Laplacian �2idx 2 Ab�2 supplemented
by boundary conditions on the vertices [1]. The “vector
potentials” Ab � 2Ab̂ are introduced to break time rever-
sal symmetry, and their value may vary from bond to bond.
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On each of the bonds b or leads i, the wave function is ex-
pressed in terms of counterpropagating waves with a wave
number k:

On the bonds: cb � abe
i�k1Ab�xb 1 ab̂e

i�k1Ab̂��Lb2xb�

On the leads: ci � Iie
2ikxi 1 Oie

ikxi , (1)

where the coordinate xb on the bond b � �i, j� takes the
value 0 �Lb� at the vertex i � j� while xi measures the
distance from the vertex along the lead i.

The amplitudes ab , ab̂ on the bonds and Ii , Oi on the
leads are determined by matching conditions at the ver-
tices. They are expressed in terms of the ỹi 3 ỹi vertex
scattering matrices S

�i�
j,j0 , where j, j0 go over all of the yi

bonds and the lead which emanate from i. The S�i� are
symmetric unitary matrices, which guarantee current con-
servation at each vertex by requiring0BBBB@

Oi

ai,j1

?

ai,jyi

1CCCCA �

0BBBB@
r�i� t

�i�
j1

? t
�i�
jyi

t
�i�
j1

s̃
�i�
j1,j1

? s̃
�i�
j1,jyi

? ? ? ?

t
�i�
jyi

s̃
�i�
jyi ,j1

? s̃
�i�
jyi ,jyi

1CCCCA
0BBBB@

Ii
cj1,i

?

cjyi ,i

1CCCCA ,

(2)

where cjl ,i � ajl ,ie
i�k1A� jl ,i��L�i,jl � . Above, the vertex scat-

tering matrix S�i� was written explicitly in terms of the
vertex reflection amplitude r�i�, the lead-bond transmis-
sion amplitudes �t�i�

j �, and the yi 3 yi bond-bond transi-

tion matrix s̃
�i�
j,j0 , which is subunitary �jdets̃�i�j , 1� due

to the coupling to the leads. As an example, for y-regular
graphs �yi � y ; i� with Neumann matching conditions
on the vertices [1],

s̃
�i�
j,j0 �

2
y 1 1

2 dj,j0 ;

t
�i�
j �

2
y 1 1

; r�i� �
2

y 1 1
2 1 . (3)

Combining Eqs. (2) for all of the vertices, we obtain the
V 3 V scattering matrix S�V � which relates the outgoing
and incoming amplitudes on the leads,
© 2000 The American Physical Society



VOLUME 85, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 31 JULY 2000
S
�V �
i,j � di,jr

�i� 1
X
r ,s

t�i�
r �I 2 S̃�k;A��21

�i,r�,�s,j�D�s,j�t
� j�
s .

(4)

Here, D�s,j��k;A� � exp�i�k 1 A�s,j��L�s,j�� is a diagonal
matrix in the 2B space of directed bonds. The matrix
S̃�k;A� � D�k;A�R̃ propagates the wave functions: R̃
assigns a scattering amplitude for transitions between con-
nected directed bonds R̃�i,r�,�s,j� � dr ,ss̃

�r�
i,j , D�k;A� pro-

vides the phase due to free propagation. The matrix R̃ is
subunitary, since jdetR̃j �

QV
i�1 jdets̃�i�j , 1. The scat-

tering matrix (4) is interpreted in the following way. The
prompt reflection at the entrance vertex induces a “direct”
component. The “chaotic” component starts by a transmis-
sion from the incoming lead i to the bonds �i, r� with trans-
mission amplitudes t

�i�
r . Multiple scattering is induced

by �I 2 S̃�k;A��21 �
P`

n�0 S̃
n�k;A�. The wave gains a

phase ei�k1Ab �Lb for each bond it traverses, and a scatter-
ing amplitude s̃

�i�
r ,s at each vertex, until it is transmitted

from the bond �s, j� to the lead j with an amplitude t
�j�
s .

Explicitly,

S
�V �
i,j � di,jr

�i� 1
X

p[Pi!j

Bpe
i�klp1bp�, (5)

where Pi!j is the set of the trajectories on G̃ which leads
from i to j. Bp is the amplitude corresponding to a path
p whose length and directed length are lp �

P
b[p Lb

and bp �
P

b[p LbAb , respectively. The scattering am-

plitude S
�V �
i,j is a sum of a large number of partial ampli-

tudes, whose complex interference brings about the typical
irregular fluctuations of jS

�V �
i,j j

2 as a function of k.
The resonances are the (complex) zeros of

ZG̃ �k� � det�I 2 S̃�k;A�� . (6)

The eigenvalues of S̃ are in the unit circle, and therefore
the resonances appear in the lower half of the complex
k plane. Denoting the eigenvalues of S�V ��k� by eiur �k�,
detS�V ��k� � exp�iQ�k�� � exp�i

PV
r�1 ur �k�� is derived

from (4) by standard manipulations [10], giving

Q�k� 2 Q�0� � 22 Im log det�I 2 S̃�k;A�� 1 L k .

(7)

L � 2
PB

b�1 Lb is twice the total length of the bonds of G̃ .
The resonance density dR�k� (which is proportional to the
Wigner delay time) [2,11] is given by dR�k� � 1

2p

dQ�k�
dk .

It assigns to each resonance a normalized Lorentzian cen-
tered at Re�kn� with a width 2 Im�kn�. Hence,

dR�k� �
1

2p
L 1

1
p

Re
X̀
n�1

X
p[Pn

nplprÃ
r
pe

i�lpk1bp�r ,

(8)

where the sum is over the set Pn of primitive periodic or-
bits whose period np is a divisor of n, with r � n�np . lp
and bp are the length and the directed length, respectively,
and the amplitudes Ãp are the products of the bond-bond
scattering amplitudes s̃

i
b,b0 along the primitive loops. The

mean resonance spacing is given by D � 2p�L . Equa-
tion (8) is an exact trace formula for the resonance density.

The classical dynamics associated with G̃ can be easily
defined on the bonds, but not on the vertices which are
singular points. However, a Liouville description is con-
structed (see [1]) by considering the evolution of a phase-
space density over the 2B dimensional space of directed
bonds. The corresponding evolution operator consists of
the transition probabilities Ũb,b0 between connected bonds
b, b0, taken from the corresponding quantum evolution op-
erator Ũb,b0 � jR̃b,b0 j2. Because of scattering to the leadsP

b0 Ũbb0 , 1, and the phase-space measure is not pre-
served but, rather, decays in time. Let p̃b�n� denote the
probability to occupy the bond b at the (topological) time
n. The probability to remain on G̃ is

P̃�n� �
2BX
b�1

p̃b�n� �
X
b,b0

Ũbb0 p̃b0�n 2 1� 	 e2GclnP̃�0� ,

(9)

where exp�2Gcl� is the largest eigenvalue of the “leaky”
evolution operator Ũbb0 . For the y-regular graph (3), the
probability to leak to the lead per time step is t2, hence,
Gcl 
 �2��1 1 y��2. The set of trapped trajectories whose
occupancy decays exponentially in time is the analog of the
strange repeller in generic Hamiltonian systems displaying
“chaotic scattering.”

The formalism above can be easily modified for graphs
where not all of the vertices are attached to leads. If l is not
attached, one has to set r�l� � 1, t

�l�
j � 0 in the definition

of S�l�. The dimension of S�V � is changed accordingly.
For generic graphs, the eigenvalues of the S̃ matrix are

strictly inside the unit circle so the resonance widths Gn �
22 Im�kn� are excluded from the domain Gn $ Ggap �
22 log�jlmaxj��Lmax, where lmax is the largest eigenvalue
of S̃�0;A� and Lmax is the longest bond. The existence of
a gap—typical for chaotic scattering [3] from sufficiently
open scatterers—is apparent in Fig. 1a. The widths are
scaled by the mean spacing D between resonances, i.e.,
gn � Gn

D so that �g�k determines whether the resonances
are overlapping ��g�k . 1� or isolated ��g�k , 1� (�?�k
denotes spectral averaging). The distribution of �gn�’s is
shown in Fig. 1b together with the predictions of RMT for
the circular unitary ensemble (CUE) [12]. In spite of the
general good agreement, it deviates systematically from
the numerical result (see inset), and it does not reproduce
the sharp gap in the width spectrum. The cross section
fluctuations depend crucially on �g�k , which can be ap-
proximated by the classical decay constant �g�k � gcl (see
Fig. 3b below). For the y regular graphs discussed above,
gcl 
 4

2p

y

11y

V
11y . By changing y and V we can control

the degree of overlap, allowing one to test various phe-
nomena, as will be described below.

We use Eq. (8) to study the resonance correlation func-
tion in terms of its form factor,
969
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FIG. 1. (a) The 5000 resonances of a single realization of a
pentagon with A fi 0. The solid line marks the position of the
gap ggap . (b) The distribution P �g�. The solid line is the RMT
prediction [12]. The difference P �g� 2 PCUE�g� is shown in
the inset.

KR�t� �
Z

dx ei2pxL t

ø
d̃R

µ
k 1

x

2

∂
d̃R

µ
k 2

x

2

∂¿
k

,

(10)

where d̃R�k� is the oscillatory part of dR�k�. By substitut-
ing (8), we find that the value of KR�t� equals the squared
sum of amplitudes Ãp of the periodic orbits of length
rlp � tL . A similar sum contributes to the spectral form
factor of the compact graph G [1]. The corresponding am-
plitudes are different due to the fact that Ãp also includes
the information about the escape of flux to the leads. As-
suming that all periodic orbits decay at the same rate, one
would expect KR�t� 
 K�t�e2gclt , where K�t� is the form
factor for the compact system [13]. This simple approxi-
mation is checked in the inset of Fig. 2 (see dashed line)
and it is shown to reproduce the numerical data rather well
in the domain t # 5. The asymptotic decay is dominated
970
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FIG. 2. The form factor KR�t� for a pentagon with generic and
Neumann boundary conditions with the same mean resonance
width �g�k and A fi 0. The data were averaged over 5000
spectral intervals and smoothed on small t intervals. In the
inset we show KR�t� for small times. The solid line corresponds
to the numerical data for the pentagon with generic boundary
conditions, while the dashed line is the approximant KR�t� 

K�t� exp�2gclt�.

by the resonances which are nearest to the gap, and it can-
not be captured by the crude argument presented above.
For a generic graph, KR decays exponentially but with a
rate given by gas � ggap (the best fit, indicated in Fig. 2
by the dashed line, gives gas which deviates by 30% from
ggap). For the graph with Neumann boundary conditions,
ggap � 0, and one expects an asymptotic power-law de-
cay. (The corresponding dashed line in Fig. 2 shows t22.)

Another signature of overlapping resonances is the Er-
icson fluctuations observed in the k dependence of the
scattering cross sections. They are one of the prominent
features which characterizes generic chaotic scattering in
the semiclassical limit. A convenient measure for Ericson
fluctuations is the autocorrelation function
C�x; n� �
1

Dj

jmaxX
j�jmin

ø
S

�V �
j,j1n

µ
k 1

x

2

∂
S

�V ��
j,j1n

µ
k 2

x

2

∂¿
k

, (11)

where Dj � jmax 2 jmin 1 1. By substituting (5) in (11), we split the sum over trajectories into two distinct parts: the
contributions of short trajectories are computed explicitly by following the multiple scattering expansion up to trajectories
of length lmax. The contribution of longer orbits is approximated by using the diagonal approximation, which results in
a Lorentzian with a width gEr , expected to be well approximated by gcl. Including explicitly up to n � 3 scatterings,
we get

C�x; n� 
 Geilmaxx gEr

gEr 2 ix
1

1
Dj

jmaxX
j�jmin

"
t4eixLj,j1n 1 t4r4e3ixLj,j1n 1 t6

X
mfij,j1n

eix�Lj,m1Lm,j1n�

#
, (12)
where the constant G is determined by the normalization
condition C�x � 0; n� � 1. The interplay between the
contributions of long and short periodic orbits is shown in
Fig. 3a. For overlapping resonances, the autocorrelation
function is well reproduced by the Lorentzian expected
from the standard theory of Ericson fluctuations. The other
case corresponds to isolated resonances, where the con-
tributions of short paths are clearly seen. From each of
the various statistical measures of the resonance density
and the cross section fluctuations discussed above, we ex-
tracted the effective average g, which would best fit the
numerical data. In Fig. 3b we compare these numerical
values, with the classical expectation, and the predictions
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FIG. 3. Regular graphs with “Neumann” boundary conditions:
(a) The real and the imaginary part of C�x, n � 1� for isolated
�±� and overlapping ��� resonances. The solid lines correspond
to the theoretical expression (12). (b) The mean resonance width
�g�k , autocorrelation width gEr , the classical expectation gcl,
and the RMT prediction [12] vs V for constant valency y � 14.

of RMT [12]. The results justify the use of the classical
estimate for the computation of these quantities, especially
in the limit V ! ` for fixed y�V (which is the analog of
the semiclassical limit). In this limit, the RMT and the
classical estimate coincide.

To investigate further the statistical properties of the
S�V � matrix, we study the distribution of scaled partial
Wigner delay times T �

D

2p

≠ur �k�
≠k . The resulting distribu-
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FIG. 4. The distribution of the scaled partial delay times T for
various graphs with Neumann boundary conditions. The dashed
lines correspond to the RMT expectation [12]. (a) One channel
and A � 0; (b) V channels and A fi 0.
tion for various graphs with A � 0 and A fi 0 are shown in
Figs. 4a and 4b, respectively, together with the predictions
of RMT [12]. An overall agreement is evident. Deviations
appear at the short time regime (i.e., short orbits), during
which the chaotic component due to multiple scattering is
not yet fully developed [14].

In summary, we presented analytical and numerical re-
sults, on the basis of which we propose quantum graphs as
a model for the study of quantum chaotic scattering. Their
simplicity enables us to obtain a new understanding of the
subject. Because of lack of space, we defer the discussion
of other results and further comparisons with RMT to a
later publication [15].
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