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Topological Chern indices are related to the number of rotational states in each molecular vibrational
band. Modification of the indices is associated to the appearance of “band degeneracies,” and exchange
of rotational states between two consecutive bands. The topological dynamical origin of these indices
is demonstrated through a semiclassical approach, and their values are computed in two examples. The
relation with the integer quantum Hall effect is briefly discussed.
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Topological numbers play an important role in many
areas of physics [1], but their appearance in molecular
physics and especially in rovibrational problems has not
been systematically appreciated so far. Simple molecu-
lar systems typically allow adiabatic separation of vibra-
tional and rotational motion. For nondegenerate isolated
electronic state (this is the case of ground state for most
molecules) the rovibrational energy level system consists
of vibrational bands, each associated with one or several
degenerate vibrational states. If the rovibrational coupling
is not too strong, further splitting of the rovibrational struc-
ture into subbands can be clearly seen. The well-known
example is the splitting of the triply degenerate vibra-
tional structure for a spherically symmetrical molecule into
three subbands due to the first-order Coriolis interaction
[2,3]. Within each subband formed by 2j 1 1 2 C levels,
with, respectively, C � 12, 0, 22, all energy levels are
usually characterized by the quantum number j of the to-
tal angular momentum, and by another quantum number
R � j 1 C�2 which characterizes the coupling of j with
the vibrational angular momentum.

In this Letter, we show that the integer C can be defined
in a much more general situation as an additional quantum
number having a precise topological meaning, namely a
Chern index, whose construction will be explained below.
This index is defined in the classical limit of the rotational
motion. It can be associated with any vibrational band
presented in the energy level pattern of molecular systems.
Formula (3) relates this topological index to the number
of rotational states within the band. A modification of
the index is associated with the formation of a contact (a
degeneracy) between two consecutive vibrational bands,
and is shown to generically imply an exchange of one
rotational state between the two bands.

Such a relation was first conjectured in 1988 [4] after
the study of the simple model (1), and a number of ef-
fective Hamiltonians reconstructed from experimental data
[see Refs. [5–7] for the molecular examples: SiH4, CD4,
SnH4, CF4, Mo�CO�6]. The universal character of the re-
distribution phenomena and its relevance to integer Hall
effect was discussed on several occasions in the molecular
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spectroscopy context [8] and in a more formal mathemati-
cal setting [9,10].

To explain the physical phenomenon and to prepare the
formulation of a rigorous statement let us consider a toy
problem which involves two quantum angular momenta
J and S, with fixed modulus J2 � j� j 1 1� and S2 �
s�s 1 1� with j, s integer or half-integer: J acts in the
space Hj of dimension �2j 1 1� which is the irreducible
representation space of the SU(2) group. Similarly, S acts
in the space Hs of dimension �2s 1 1�. The total space
is Htot � Hj ≠ Hs with dimension �2j 1 1� �2s 1 1�.

The most general quantum Hamiltonian Ĥ�S, J�j� we
will consider is a Hermitian operator acting in Htot and
its action in space Hj is supposed to be expressed in terms
of the operators J�j. The factor 1�j is introduced here to
ensure the existence of the classical limit for j ! `. An
extremely simple form of Ĥ is

Ĥ � �1 2 t�Sz 1
t
j

�J ? S� , (1)

with j . s, t [ 4, which was used initially in Ref. [4]
to study the redistribution phenomenon and further in
Ref. [11] to establish its relation with the classical mono-
dromy. We use this Hamiltonian (1) to illustrate the strict
statement (3), but we will see that its validity extends to a
general Ĥ�S, J�j�.

In the two extremes limits t � 0 (no “spin-orbit”
coupling), and t � 1 (“spin-orbit” coupling), the en-
ergy level spectrum of (1) shows different patterns of
energy levels into bands indexed by g. For t � 0 all
energies Eg � g, g [ �2s, . . . , 1s� appear with the
same multiplicities Ng � �2j 1 1�. For t � 1 the spec-
trum is split into degenerate multiplets characterized by
different eigenvalues of the coupled angular momen-
tum N2 � �J 1 S�2. As in the case of standard spin-
orbit coupling with j . s there are 2s 1 1 different
levels Eg � �n�n 1 1� 2 j� j 1 1� 2 s�s 1 1����2j�,
g � n 2 j [ �2s, . . . , 1s�, with different multiplicities
Ng � �2j 1 1� 1 2g. The two different limiting cases for
the structures of the �2s 1 1� bands suggest to introduce
© 2000 The American Physical Society
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a new quantum number Cg associated with the value of
Ng within each band.

To define Cg for a general Hamiltonian Ĥ�S, J�j� we
assume that j ¿ s, so that it is physically reasonable
to consider Jcl � J as classical, whereas S remains
quantum. The classical dynamics for Jcl can be de-
fined through the SU(2) coherent states jJcl� [12]. The
classical phase space for Jcl is the sphere S2

j . From
dJcl�dt � ≠JclHcl 3 Jcl and because of the factor 1�j
in Eq. (1), Jcl corresponds to a slow dynamical variable
compared to S, and the Born-Oppenheimer approximation
suggests for each Jcl, consideration of the Hermitian
operator Ĥs�Jcl� � 	JcljĤjJcl� acting on Hs, with spec-
trum Ĥs�Jcl� jcg,Jcl� � Eg,Jcl jcg,Jcl �, g [ �2s, . . . , 1s�.
We suppose that for each Jcl, the �2s 1 1� eigenvalues
are isolated: E2s,Jcl , E2s11,Jcl , · · · , E1s,Jcl . This
is the generic situation, because degeneracies are of
codimension 3, and Jcl [ S2

j is only two dimensional.
For each level g, let us note �jcg,Jcl �� the eigenvector de-

fined up to a multiplication by a phase eia . The applica-
tion Jcl ! �jcg,Jcl �� defines then a U�1� fiber bundle over
the sphere S2

j , which is the set of all the possible phases
a for every value of Jcl. The topology of this bundle is
characterized by a Chern number Cg [ � [13]. Cg reveals
the possible global twist of the fiber of phases a over the
sphere S2

j , in the same way the well-known Möbius strip
is the real line fiber bundle over the circle S1 with a global
twist 21 (rotation of p), see Fig. 1.

Note that
1sX

g�2s
Cg � 0 , (2)

just because of the additivity of Chern indices, and because
the eigenvectors �jcg,Jcl�� span the space Hs which does
not depend on Jcl.

The Born Oppenheimer approach tells that the total
spectrum Ĥjfi� � Eijfi�, i [ �1, . . . , �2s 1 1� �2j 1

1�� in Htot, can be represented as formed in 2s 1 1
groups of levels (bands) with eigenfunctions of each group
spanning vector spaces: Lg , Htot, g [ �2s, . . . , 1s�.
We specify now the number Ng of levels in each group:

For a general Hamiltonian Ĥ�S, J�j�, and for j large
enough then dimLg � dimHj 2 Cg, so

cl

g,Jcl
eiα

J

|ψ
...

...

>

FIG. 1. The Chern index Cg expresses the twist made by the
circles for the phases a of the eigenvectors eia jcg,Jcl � over the
sphere of spin Jcl, in a similar way the Möbius strip has a twist
made by the lines over a circle.
Ng � �2j 1 1� 2 Cg ; (3)

i.e., the number Ng of states jfi� in each band Lg of
Htot is given by the quantum number j and an additional
quantum number Cg, namely the topological Chern index.
This result has been formulated in a more mathematical
context by Bellissard [9] and by Zelditch [10] but was not
published due to its “apparent mathematical simplicity.”

We will prove formula (3) below.
A few remarks are in order here. Since �2j 1 1� is the

number of quanta in the classical phase space S2
j for spin

Jcl, Eq. (3) looks like a Weyl formula with a correction.
The index Cg has been defined and can be computed in “a
semiquantal” approach where Jcl is considered as a classi-
cal variable and S quantum. Nevertheless, Eq. (3) provides
information on the full quantum problem: the spectrum of
Ĥ. Finally, the topological nature of Cg reveals a quali-
tative and robust property of the spectrum of Ĥ, stable
under perturbations, provided no degeneracy appears be-
tween consecutive bands. One can say that Cg expresses
a topological coupling between the dynamical variables J
and S.

We suggest two approachs for the computation of the
Chern indices of different bands. The first one we use
below is algebraic. The second one uses Berry’s connec-
tion, and is based on the curvature formula [13]. This last
formula could be useful for numerical computations. The
algebraic calculation is based on the geometric interpreta-
tion of the Chern index Cg as the total intersection number
between the one-dimensional curve �jcg,Jcl��Jcl in the pro-
jective space ��Hs�, with the hyperplane �jc0��� � �jw�
such that 	wjc0� � 0�. Here jc0� [ Hs is arbitrary. Each
intersection has number s � 11 (21) if the curve orien-
tation is compatible (incompatible) with the orientation of
the hyperplane. Cg is the sum of these intersection num-
bers [14].

The application of this algebraic method of calculation
to the two limiting cases of Hamiltonian (1) is immedi-
ate. For t � 0 the Hamiltonian Ĥs�Jcl� � Sz does not de-
pend on Jcl, the application Jcl ! �jcg,Jcl�� is constant,
the topology of the bundle is trivial with zero Chern index:
Cg � 0, in accordance with Eq. (3). For t � 1 we have

Ĥs�Jcl� � 	JcljĤjJcl� �
1
j

�Jcl ? S� ,

with Jcl a vector on the sphere S2
j , and S a vectorial op-

erator in Hs. The eigenvector jcg,Jcl � is easily obtained

from the eigenvector jms � g� ~ S
�s1g�
1 j0� of Sz by a ro-

tation which transforms the z axis to the Jcl axis on the
sphere. It is convenient to choose a coherent state jS0,cl�
as the reference state jc0�, where S0,cl is an arbitrary
classical spin S. An intersection of the curve �jcg,Jcl ��Jcl

with the hyperplane �jc0��� is then given by the equa-
tion 	S0,cljcg,Jcl � � 0 which has a very simple interpreta-
tion: the point S0,cl is a zero of the Husimi representation
Hus�Scl� � j	Scljcg,Jcl �j2 of the state jcg,Jcl� on the sphere
961
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S2
s (the classical phase space of S), shown in Fig. 2. The

Husimi representation has �s 2 g� zeros inside the (ori-
ented) trajectory, and �s 1 g� zeros outside [15]. When
the axis Jcl moves with direct orientation on the whole
sphere, the �s 2 g� zeros pass with positive orientation
over the fixed point S0,cl, giving s1 � s 2 g, whereas the
s 1 g zeros pass with negative orientation over S0,cl, giv-
ing s2 � 2�s 1 g�. So Cg � s1 1 s2 � 22g in ac-
cordance with Eq. (3).

In this last example, the variation of Chern indices
DCg � 22g occurs at t � 1�2, with a degeneracy be-
tween the bands at Jcl � �0, 0, 2j�, giving Ĥs�Jcl� � 0.
In the case of two bands (s � 1�2, g � 61�2) then
DCg�6 � 71, and the two bands have a conical contact
at the degeneracy. In the vicinity of the degeneracy,
and for j ! `, we observe that �J2, J1� � 22Jz 
 2j,
so a � J2�

p
2j, a1 � J1�

p
2j fulfilled the harmonic

oscillator commutation relations. In the basis j6� �
jms � 61�2� of Hs, the expression of Ĥ can be simpli-
fied and gives

Ĥ �
1

2
p

2j

√
2t̃ a
a1 t̃

!
, (4)

with t̃ � �2t 2 1�
p

2j. We also scale the energy with
Ẽ � E2

p
2j, and note jn� ~ a1nj0�. The stationary equa-

tion Ĥjf� � Ejf� can easily be solved, giving for n �
1, 2, . . . , jf6

n � � jn� j2� 1
p

n��Ẽ6
n 1 t̃� jn 2 1� j1�

with Ẽ6
n � 6

p
n 1 t̃2, and one single state jf0� �

j0� j2� with Ẽ0 � t̃. Figure 3 shows this spectrum with
the simplified expressions of jf6

n � obtained for large
jt̃j. These simplified expressions involving the states jn�
of the harmonic oscillator express the quantized modes
for small oscillations near the extrema of the two bands
[16]. We clearly observe the exchange of one state in
the spectrum, giving DNg�6 � 61. As a consequence,
DNg 1 DCg � 0. This gives for each band a conserved
quantity, namely �Ng 1 Cg�. The variation DC1 � 21
can also be considered as “the topological charge” asso-
ciated to the degeneracy of the 2 3 2 matrix (4) where
acl � xcl 2 ipcl is a classical variable.

cl

S
g,J

0,cl

(= classical trajectory)

(s-g) zeros

(s+g) zeros

J
cl

axis

Classical support of state >|ψ

FIG. 2. The Husimi distribution for the state jcg,Jcl � on the
sphere S2

s for spin S. S0,cl is a reference point.
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For a general Hamiltonian Ĥ�S, J�j� the simple model
Eq. (4) provides the general mechanism for the exchange
of one state in the vicinity of every degeneracy between
two consecutive bands. In the trivial case Ĥ0 � Sz , we
have computed the value of the conserved quantity: Ng 1

Cg � 2j 1 1. We deduce that it is still correct when Ĥ0

is deformed to Ĥ�S, J�j�, proving (3).
The second example addresses the Chern indices of

the two-state model corresponding to s � 1�2, i.e., to
dimHs � 2. In a given fixed basis, say jms � 61�2�,
the matrix of Ĥs�Jcl� has the form:

Ĥs �

√
h11�Jcl� h12�Jcl�
h12�Jcl� h22�Jcl�

!
. (5)

This matrix will give two vibrational subbands with
Chern indices C2 and C1. In Ref. [17], it is shown
that the Chern indices have the following property: Let
J� be the zeros of h12�Jcl�, and s�J��, their degree de-
fined as follows: take a small direct circle around J�;
its image by h12�Jcl� is a closed curve around 0 with
s�J�� turns. Define the set S1 � �Jcl [ S2

j such that
�h22�Jcl� 2 h11�Jcl�� . 0�. Then

C1 �
X

J�[S1

s�J�� � 2C2 . (6)

A direct consequence of this property is that a change
of Chern index can occur only when simultaneously
h12�J�� � h22�J�� 2 h11�J�� � 0. This corresponds to a
degeneracy in the spectrum of Ĥs, and a conical contact
of the two bands.

Formula (6) can be applied to a Hamiltonian describing
the rotational structure of the doubly degenerated vibra-
tional state of a tetrahedral (or octahedral) spherical top
molecule [18]. The most general Hamiltonian, taken up to
the third degree in J, has the form (5) with

h12�J� � �J2
x 2 J2

y ��j2 1 iXJxJyJz�j3,

h22�J� 2 h11�J� � �3J2
z 2 j� j 1 1���j2,

FIG. 3. Spectrum of rotational states for the Hamiltonian (4).
t̃ � 0 corresponds a conical contact (degeneracy) between the
two bands, with a topological charge DC1 � 21, and an ex-
change of one rotational state, DN1 � 11.
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with parameter X [ 4. In this case the set S1 includes
all points around the north and south pole for which Jz .
1p
3

p
j� j 1 1� or Jz ,

21p
3

p
j� j 1 1�. As h12�J� � 0 for

simultaneously Jx � 6Jy , and JxJyJz � 0 there are two
points J� [ S1: the north pole Jz � j and the south pole
Jz � 2j. We consider J going through a closed path
surrounding each J� to calculate s�J��. This gives for
north and for the south poles snorth � ssouth � 2 sgn�X�,
so that C1 � 4 sgn�X� and C2 � 2C1.

This calculation explains why the rotational structure
of doubly degenerate vibrational state is generally split
into two subbands with, respectively, 2j 1 5 and 2j 2 3
levels [6,19]. In our current approach the appearance of
two bands with Chern indices 64 for the Hamiltonian (5)
is due to the formation of eight degeneracies [equivalent by
symmetry] between the two vibrational bands at X � 0 pa-
rameter value. More generally the characterization of the
rovibrational structure of molecules and its possible modi-
fication under the variation of some physical parameters
like total angular momentum can be done systematically
by using Chern indices as topological quantum numbers.
In Ref. [7] a similar effect was discussed without explicit
introduction of Chern indices.

The molecular application studied in this Letter was
mainly inspired by the role played by topological Chern
indices in the integer quantum Hall effect [20]. In this con-
text, Chern indices describe the topology of Floquet bands
�k� ! �jcg�k��� where k is the Bloch wave vector, and
give a quantum Hall conductance sg � �e2�h�Cg under
the hypothesis of adiabatic motion of k when a weak elec-
trical field is applied. Contrary to Eq. (2), their sum for a
given Landau level is

P
g Cg � 11, because of the non-

trivial topology of the quantum space [20]. Many proper-
ties of the Chern indices are similar: a change DCg � 61
is related to a conical degeneracy between consecutive
bands. The application of semiclassical calculations of Cg

done for the Hall conductance in Ref. [21], will be the sub-
ject of future work.

In summary, we have discussed the role of Chern quan-
tum numbers to molecular spectroscopy. The interpre-
tation of good integer quantum numbers associated with
rotational structure of different vibrational bands in terms
of topological Chern numbers has naturally a wide appli-
cability. These indices can be introduced any time when
the adiabatic separation of variables enables one to split
the global structure into bands associated with the “fast
motion” and their internal structure described by a “slow
motion” on a compact phase space. We have considered
here only the problem when the dimension of the classical
phase space formed by the slow variable Jcl is 2. Only the
first Chern class appears in this case. Extension to higher
dimension requires more delicate physical interpretation
and more sophisticated mathematical tools in relation with
the index theorem of Atiyah-Singer. In molecular spec-
troscopy many problems with intramolecular dynamics are
known in great detail. They can be used to test the appli-
cability of this new concept.
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