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Collision Induced Raman Scattering as a Probe of Covalent Bonding in Mercury Diatoms
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We show that collision induced Raman spectra of mercury vapors can be understood if a specific
contribution to the pair polarizability due to covalent contribution to interatomic interaction is taken into
account. Such a result is important because it demonstrates the possibility to use Raman spectroscopy in
order to study the nature of the short range interaction in mercury and presumably in all divalent metal

pairs.
PACS numbers: 31.70.—f, 33.20.Fb, 34.20.Cf

Mercury has been studied with great care in the past
years. Spectroscopic measurements of mercury dimers are
available from which it has been possible to extract infor-
mation on the interatomic potential [1—-4]. Also ab initio
calculations of the interatomic potential have been commu-
nicated where, in particular, it has been pointed out that
an important covalent contribution to bonding should be
present [5,6]. In another series of papers the arising of a
covalent bonding has been studied as a function of cluster
dimension both experimentally [7—11] and theoretically
[12—-16]. It is now rather well established that when in-
creasing the size of the cluster of mercury atoms there is
a transition from van der Waals to covalent and metallic
bonding. It is thus important to understand the role of the
covalent bonding in the mercury-mercury interaction in or-
der to get a better insight into the transition to the metallic
phase.

A few years ago a paper [6] appeared with the calcula-
tion of the average of the squared deviation of the charge
¢>(8N?) on a mercury atom in the presence of a second
one at a distance R (e is electron charge). Such a devi-
ation indicates the presence of ionic configurations in the
ground electronic state of a pair of mercury atoms. The
charge fluctuation amounts to about 0.2 (in atomic units)
at the distance R, (where the potential is minimum). Just
as a comparison with a van der Waals pair it was noted
that the same fluctuation for helium amounts to 0.01. It
is finally worth noting that ionic configurations admit ex-
change of electrons and thus the formation of covalent
bonding.

In this Letter we want to discuss some recent results [17]
of collision induced (CI) Raman scattering on low density
mercury vapors and show that they can be accounted for
once the contribution of the ionic configurations on the
CI polarizability is taken into account. In this way we
demonstrate for the first time that CI Raman scattering is
an appropriate technique to show the existence of covalent
bonding in pairs of mercury atoms.

In order to show that we will take advantage of the great
quantity of data relative to pure van der Waals pairs like
rare gas atoms. CI spectra of low density rare gas atoms
have been studied both experimentally and theoretically
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(see references cited in [18]). It is now established with
reasonable accuracy that pair polarizabilities of such com-
plexes are explained by means of induction mechanisms
that originate from electrostatic and exchange interactions.
Electrostatic induction mechanisms are rather well known,
at least at large interatomic distances. Exchange effects
are less well known but it is always recognized that they
give a negative contribution to the pair polarizability. Such
effects, both electrostatic and, even though to a lesser de-
gree, the exchange ones, scale with the atomic polarizabil-
ity while distances are to be rescaled by its cubic root [18].
However, the application of this model to mercury indi-
cates that, in order to reproduce the Raman spectrum, it is
necessary to introduce, in the previous model, a large pos-
itive contribution to the pair polarizability [19-21,17,22].
We will show that such a contribution can be justified with
the existence of sizable charge fluctuations in the electronic
ground state of the atomic pair.

We now want to derive an approximate expression for
the contribution to the pair polarizability due to the mixing
of ionic configurations in the ground state. We will assume
for simplicity that only two valence electrons for each atom
take part in the determination of the interaction. Such an
assumption is not relevant to the general aspects of the
result that we will arrive at, though.

The ground electronic state of the two atoms can be
written, when neglecting the interaction of the atoms, as

VP~ Isaxipsax-1pssxipsx-1ol, (D

where A and B indicate the positions of the two nuclei,
s4 and sp are atomic orbitals of s type relative to nuclei
A and B, respectively, and y, is the spin eigenfunction
with projection u on the quantization axis. Finally |---|
indicates a Slater determinant.

When the interatomic interaction is taken into account,
the ground state mixes with excited configurations of the
pair. Such excited states are both purely atomic and ionic.
Moreover, because we are interested in understanding the
role of ionic configurations in the induced polarizability,
we will retain only the mixing with ionic configurations.
Thus, the ground state W, has a form like
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W, = WP + Aion , 2)
where A indicates the amount of ionic configurations (¢jep)
in the ground electronic state. It is such an amount that
determines the charge fluctuations on each atom and thus
such fluctuations will be related to A in a way that will

(@
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be determined in the following. We can think that ionic
configurations are such that one single valence s electron
is on one atom and two s electrons plus a p electron are
on the other atom [13]. We thus get a degeneracy related
to the cases for which the negative ion is formed either
on atom A or on atom B. An ionic configuration with a

| definite value of the total spin S, Mg can be written as

3)

which represents a configuration in which atom A is nega- |
tive and atom B is positive. C(---) are Clebsh-Gordan
coefficients and the superscript i indicates the direction
(i = x,v,z) of the p orbital.

Neglecting interatomic interactions that depend on spin,
only S = O configurations can mix to ‘Pgo]. In the follow-
ing it will be understood that o, represents only S = 0
states. In this case we can form the two combinations

o _ 1 (i)

Y- [y =y )

which are symmetric (W) and antisymmetric (W_) for
inversion of electron positions. Moreover, \Ifg) will give
rise to bonding whereas W) to antibonding. The atomic
orbital p can be directed along the internuclear axis (z
axis) or orthogonally to it (x, y axes). The strength of the
bonding (antibonding) will be determined by the superpo-
sition integral of, say, orbital px with orbital sg, that we

dV,(E;
A — 2<g() |Dt|\Pg> =
dE; |p—o I,

2 . .
I — R (O |D; W) + AP0 D WP

name Q;. Itis to be expected that most bonding will be ob-
tained with i = z (maximum superposition) and thus ;on
in Eq. (2) is to be replaced by \If(f).

In the presence of an electric field, the ground state wave
function (which is symmetric for position inversion) will
mix with antisymmetric states
<‘1’@|DiEi|‘I’g>

A,
where A; is the energy of the antisymmetric state W)
minus the ground state energy. D; is the ith component of
the electric dipole moment of the pair of atoms.

Because a negative mercury ion is unstable we can as-
sume that the energy difference of the ionic states with
respect to the ground state is about 7, (atomic ionization
potential) plus the electrostatic energy —e?/R where R is
the internuclear distance. We will thus replace in the pre-
vious equation A; with I, — ¢?/R .

The components of the polarizability can be calculated

W, (E) =W, + v, (5)

| by using Eq. (5),

(6)

The matrix elements appearing in the previous equation |
can be evaluated as expansions of powers of superposition
integrals Q; (superposition integrals of s atomic orbitals
on different atoms will be neglected). By retaining the
first significant contribution we get

eRQ;
i,Z \/E E)
WDy ~ 5;.eR

where J; ; is the Kronecker symbol. It is seen that a,, =
ayy = 0. Such a result is a consequence of our model for
which the dipole induced by the electric field is originated
only by a transfer of charge from one atom to the other.
We will thus name B.¢ (= a;; — a,) such a contribution
to the polarizability anisotropy
: Qz g 2
Bt = T =g ﬁQR .®
As said previously, A2 can be related to (SN2). The
squared modulus of the ground state wave function is com-
posed of three terms [see Eq. (2)]:

WOID; | ¥l ~ 5
(7

2A2<1 +

Wl = WO x (1 = A2 = 2v240,) + 2[WP

+ 22w ©

To the first term we can associate a null net charge on each
atom and to the second term a charge *e. As far as the
third term is concerned, which results both from atomic
and ionic contributions, we assume that it contributes with
a charge fluctuation *e/2. The squared charge fluctuation
is thus equal to

(6N? = A2 + A0,/ 2, (10)
and thus
e 2 &) 2
Be o 62/R2<6N ><1 + N R2. a1

At this point a relation is needed between Q, and A. In
order to do that we minimize with respect to A the quantity
(V,|H|W¥,) where ¥, is given by Eq. (2). A simplified
model obtained by two electrons shows that at relatively
large interatomic distances we have
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X/N2

A~ ——m—— 12
—I, + ¢*/R (12)
with X a resonance integral,
2¢e?
X = V2Pvie?) ~ ~Zo. a3)

where, in the second equality, we have assumed the reso-
nance integral X to be proportional to the superposition
integral Q. with a proportionality coefficient given by
—2¢?/R. Such an assumption is rather crude; more re-
fined models would be needed for more quantitative results
which, however, will not be considered here. With such an
assumption we get

2
A~ \/ie QZ ’ (14)
R I, — e*/R
and finally
2¢%/R
~evR(1e )
Ber ~ (5N?) p——yT (15)

The expression for the polarizability in Eq. (15) repre-
sents the contribution that arises from the fluctuations of
charge on each single atom. Such a fluctuation is relatively
small for helium. It is thus to be expected that such a con-
tribution is practically absent in helium (and in all rare gas
systems), but it may become significant in mercury (and
even more important in other liquid metal vapors). Here
we will assume for the total polarizability 8 in mercury
an expression that contains both the rare gas (8,¢) and the
charge fluctuation (S.f) contributions

B = Brg + Bt (16)

where (B, is obtained from Eq. (12) in [18] with aq the
mercury atomic polarizability (38.5 a.u.) and r; (= 1.25
a.u.) extrapolated from the rare gas values. Such an ex-
trapolation is rather arbitrary but it hardly affects our final
results because B, at short interatomic distances, where
the exchange contribution is important, is almost negligi-
ble with respect to B.+ (see Fig. 1).
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FIG. 1. Solid line: total polarizability anisotropy. Dashed line:

rare gas contribution (8,.) to the polarizability anisotropy.
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In order to get B.¢ from Eq. (15) we need, apart from
I, = 10.44 eV, the function (§N?). Here we use the CI
Raman spectra [17] to determine it. The Raman spectra can
be numerically evaluated according to standard procedures
and by means of a computer code [23]. An interatomic po-
tential for mercury is needed: we have used the one derived
in [22] that is able to reproduce both dimeric energies and
low density viscosity data. We find that the measured Ra-
man spectrum can be reproduced with a (6 N2)'/2 that is
shown in Fig. 2 as a solid line. In the same figure, as a
dashed line, the estimation of the same quantity in [6].

The measured Raman spectrum and the one calculated
by means of Eq. (16) are reported in Fig. 3. In the same
figure also the spectrum calculated by neglecting B¢ is
reported (dashed line): the comparison with the measured
spectrum shows the inadequacy of the rare-gas model for
mercury.

The comparison of (8 N2)!/2 calculated in Ref. [6] with
the one derived here (Fig. 2) shows that our model for S.¢
is quite reasonable. Discrepancies are relatively larger as
the interatomic distance increases. Indeed, as interatomic
distance increases, the B¢ contribution becomes relatively
smaller (see Fig. 1) and, consequently, its determination is
less reliable. On the other hand, in the range of distances
that mostly affect the Raman spectrum (6—7 a.u.), the rela-
tive deviation of (§N2)'/2 as derived here with the one
calculated in [6] amounts to about 25%, which we think is
quite acceptable in view of all the approximations used in
the present work.

As a consequence, we have demonstrated the role of
charge fluctuations in the polarizability anisotropy of mer-
cury pairs and have indicated a method to estimate it by
means of CI Raman spectra. The same method is clearly
applicable to all systems in which charge fluctuations are
relevant (the first candidates being the other metal vapors
like Cd and Zn).

We thank Professor L. Frommhold for providing us
with the computer code for the calculation of the Raman
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FIG. 2. Solid line: charge fluctuation (6N2)/2 (in a.u.) de-
rived from Raman spectrum. Dashed line: (§N?)!/2 evaluated
in [6].
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FIG. 3. Squares: measured Raman spectrum [17]. Solid line:
Raman spectrum calculated with S.¢ contribution. Dashed line:
Raman spectrum calculated without B¢ contribution. In the
inset same as before for Raman intensity multiplied by frequency
shift squared.

spectrum, and Professor F. Hensel for pointing out to us
the importance of charge fluctuations in the determination
of the pair polarizability.
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