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A scrutiny of the matrix elements within the f shell of the spin-other-orbit interaction Hsoo has re-
vealed many unexpected proportionalities that go beyond an application of the Wigner-Eckart theorem
to Racah’s groups G2 and SO�7�. An explanation is sought by using the automorphisms of SO�8� by
means of which the states of the atomic f shell are generated by two alternative SO�7� bases of the
type � 1

2
1
2

1
2 �4, each augmented by two parity labels. Transformations between the bases can be made

by reversing the relative phases of the two angular-momentum states 3 and 0 that comprise any one of
the four SO�7� spinors. The method is exemplified by the single-electron spin-orbit interaction Hso, for
which a component can be found that is invariant under the phase reversal. The extension from Hso

to Hsoo is described for the component z6 of Hsoo, and several examples drawn from the comparatively
inaccessible configurations near the middle of the f shell are presented.

PACS numbers: 31.15.Hz, 31.10.+z, 32.90.+a, 71.70.Ej
The atomic f shell is a source of continuing surprises.
Selection rules and proportionalities of blocks of matrix
elements often go beyond what would be expected from
an application of the Wigner-Eckart theorem to the groups
SO�7� and G2 introduced by Racah [1]. A calculation by
Hansen [2] of the matrix elements of the spin-other-orbit
interaction Hsoo for the entire f shell has exposed a large
number of unexpected proportionalities, particularly for
the components of Hsoo belonging to the irreducible rep-
resentation (IR) (30) of G2. The group labels, which have
been known for some time [3], are convenient to work with
because contributions to Hsoo from other sources, such as
electrostatically correlated spin-orbit effects (ELSO) [4],
can be readily included in spectroscopic analyses. Current
work on rare-earth and actinide spectra parametrize Hsoo
with constrained Marvin integrals Mk and ELSO coeffi-
cients Pk [5].

Previous experience with the three-electron scalar op-
erators ti , which can be used to represent the Coulomb
interaction between fN and fN61l71, has suggested that
the automorphisms of SO�8� may play a key role in under-
standing the proportionalities. The automorphisms imply
the existence of three distinct SO�7� subgroups of SO�8�,
only one of which is the SO�7� group used by Racah. We
refer to the others as SO�7�0 and SO�7�00. The IRs W 0 of
SO�7�0 extend over a different range from the IRs W of
SO�7�, and a transformation between these two schemes
has allowed some of the proportionalities of the ti matrices
to be understood in terms of applications of the Wigner-
Eckart theorem to SO�7�0 [6]. In contrast, the IRs W 00

of SO�7�00 extend over the same range as the W , and a
recent review has stated that no useful applications have
been found for SO�7�00 [7]. It is the function of this Letter
to show that mere phase changes in going from SO�7� to
SO�7�00 can determine relations between matrix elements
of the spin-orbit type within different configurations fN

and hence supply an explanation for some of the mysteri-
ous proportionalities.
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The generators of SO�8� can be obtained from those
of SO�7� by adjoining sextuple products of creation and
annihilation operators for f electrons. However, as rec-
ognized by Labarthe [8], it is simpler to introduce four
fictitious particles qu �u � l, m, n, j�, each belonging to
the 8-dimensional IR � 1

2
1
2

1
2 � of SO�7�. In other papers, we

have called the qu quarks because of certain similarities to
their namesakes in high-energy physics [7]. The mapping
from electrons to the qu proceeds in two steps. First, the f
electrons are separated into NA with spin up and NB with
spin down [9], and quasiparticles of the Bogoliubov type
[10] are defined by

ly
m �

1
p

2
�ay1�2,m 2 �21�ma1�2,2m� ,

my
m �

1
p

2
�ay1�2,m 1 �21�ma1�2,2m� ,

ny
m � 1

p
2
�ay21�2,m 2 �21�ma21�2,2m� ,

(1)

jy
m �

1
p

2
�ay21�2,m 1 �21�ma21�2,2m�

for 23 # m # 3. Each tensor uy (with components uy
m)

belongs to the 7-dimensional IR (100) of SO�7�. The sec-
ond step is to make the nonlinear replacements

uy � Au�qy
u qu��100�. (2)

The coefficients Au , which are of no special concern to
us in this Letter, are phase-adjusted Dirac matrices that
preserve the anticommutation of the uy. Their rows and
columns correspond to the four vacua j0�pp0 , where p
and p0 are the parities of NA and NB [11]. The products
�qy

u qu�W for which W � �110� form the 21 generators of
Racah’s SO�7� when summed over u. All we have to do
to get the generators of SO�8� is to add the seven operators
for which W � �100�. The states of the f shell are now
represented by

qy
lqy

mqy
n qy

j j0�pp0 . (3)

The four vacua, taken with the eight components of
each qy

u , give the 214 states of the configurations
fN �0 # N # 14�.
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The distinction between SO�7� and SO�7�00 appears
when the reduction SO�7� ! SO�3� is made. The IR
� 1

2
1
2

1
2 � decomposes into the angular momenta 3 and 0,

so qu ! fu 1 su . The present paper focuses on the
consequences of reversing the relative phases of the
states fu and su . In view of the arbitrary nature of many
phases, it may seem surprising that anything useful can
accrue from this operation. Nevertheless, the switch has
a dramatic effect when expressed in terms of the usual
electron model. The generators of Racah’s group SO�7�
can be written in the new formalism as

X
u

� fy
u fu��1�,

X
u

� fy
u fu��5�, (4)

2
1
2

X
u

� fy
u fu��3� 1

q
3
8

X
u

��syu fu��3� 2 � fy
u su��3�� . (5)

To get the generators of SO�7�00, we have only to make the
replacements

syu ! 2syu and su ! 2su . (6)

In the electron model, the generators of SO�7�00 involve
sextuple products of annihilation and creation operators
and can connect states in distinct f-electron configura-
tions. The tensors (4) are the generators of the exceptional
Lie group G2 used by Racah and are untouched by the
phase reversals, so the connected states belong to identi-
cal IRs of G2. The group SO�7�0 possesses the generatorsP

u� fy
u fu��k�, with k � 1, 3, and 5. It is not relevant to

the present work and will not be considered further.
If we do not sum over u in (4) and (5), we get the

generators of the SO�7� group for a single qu , which we
write as SOu�7�. By summing over u as is done in (4) and
(5), we effect the reduction

SOl�7� 3 SOm�7� 3 SOn�7� 3 SOj�7� ! SO�7� . (7)

Because of the independence of the qu , it is not neces-
sary to make phase reversals for all four u’s simultane-
ously. The replacement u � j alone leads to SOj�7� !
SOj�7�00 but leaves the three other groups in the direct
product above unchanged. We shall focus on this single
replacement, although it is clear that eight different com-
binations of replacements are possible, each one of which
leads to a distinct form for the generators (5) and thus to a
different SO�7� group on the right-hand side of (7).

Under the phase reversal, qu becomes q00u and belongs to
� 1

2
1
2

1
2 � of SOu�7�00. In both cases, the f shell is generated

by � 1
2

1
2

1
2 �4. Thus, in addition to the usual set of basis

states for the f shell, there is another one of exactly the
same type, but which can be distinguished from the first by
carrying double primes on N , S, and the IRs W of SO�7�.
No double primes are needed for the IRs U of G2 or L of
SOL�3�, which are preserved under the phase reversal.

If, then, we are studying an operator H of physical in-
terest that is invariant under the phase reversal (for a par-
ticular u or set of u’s), we have
�C00
a jHjC00

b � � �CajHjCb� , (8)

where C00
a and C

00
b are constructed by taking the labels de-

scribing Ca and Cb and simply attaching double primes
to those that need them. Once C00

a and C
00
b are expressed

as sums over the unprimed states, Eq. (8) becomes a ma-
trix equation comprising as many relations between the
unprimed matrix elements as there are cells in the matrix.
Many of these relations may be superpositions of others
and therefore not useful, but we might hope that others
may go beyond what is to be expected from applications
of the Wigner-Eckart theorem to G2 or SO�7�.

The transformation between the unprimed and doubly
primed states can be worked out by first adding the gener-
ators of SOl�7�, SOm�7�, and SOn�7� to give the subgroup
SOh�7� of their direct product. It is known that the states
of either even or odd N of the f shell span the spinor IR
� 1

2 · · · 1
2 6 1

2 � of SO�28�, and that

SO�28� . SOT �3� 3 SOh�7� 3 SOj�7� , (9)

where the generators of SOT �3� are the components of
T � S 1 Q, the sum of the spin and quasispin [12]. The
components of T are given by the SO�7� scalars

Tx � 2�my ? n�, Ty � 2i�ny ? l�, Tz � �ly ? m�
(10)

and do not involve jy at all. The branching runs

� 1
2 · · · 1

2 6
1
2 � ! � 1

2 � 3 � 3
2

3
2

3
2 � 3 � 1

2
1
2

1
2 � 1 � 3

2 �
3 � 3

2
3
2

1
2 � 3 � 1

2
1
2

1
2 � 1 � 5

2 � 3 � 3
2

1
2

1
2 �

3 � 1
2

1
2

1
2 � 1 � 7

2 � 3 � 1
2

1
2

1
2 � 3 � 1

2
1
2

1
2 �

with dimension check

213 � 2 3 112 3 8 1 4 3 112 3 8 1 6 3 48 3 8

1 8 3 8 3 8 .

This indicates that the IRs WT of SOh�7� are uniquely tied
to the quantum numbers T . Consider any state within the
f shell in the basis

j�QS�TMTC� � j�QS�TMTWUtLML� , (11)

where t distinguishes duplicated L values in a given U. Its
expansion in terms of the states in which qj is separated
out is given by the isoscalar factor

���WTU1 1 � 1
2

1
2

1
2 �U2 jWU��� (12)

in the notation of Racah [1]. These isoscalars are known
[11]. As an example, the factors for which U � �21�,
T � 3

2 , and WT � � 3
2

3
2

1
2 � are collected in Table I.

The next step is to reverse the phase for sj as in (6) with
u � j. This is done for the example in hand by reversing
the signs of the coefficients in the column headed �21� 1

�00� in Table I. At the same time, double primes are added
to the IRs W in the first column. The multiplicities 2S 1 1
and 2Q 1 1 are abbreviated to �S� and �Q�. We now
regard Table I and its converted form as two orthogonal
949
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TABLE I. The isoscalars (12) for U � �21� and T � 3
2
. The prefixed multiplicities �K� stand

for 2K 1 1.

��Q� �S�� �T �WU �21� 1 �00� �11� 1 �10� �20� 1 �10� �21� 1 �10�

�25�4�210� �21�
p

5

4
p

2
2

p
3

4
p

2

p
3

4
p

14
2

p
165

4
p

14

�43�4�211� �21�
p

5

4
2

1

4
p

3

13

4
p

21

p
55

4
p

21

�41�4�220� �21�
p

3

4
2

p
5

4
2

3
p

5

4
p

7

p
11

4
p

7
�23�4�221� �21� 2

p
11

4
p

2
2

p
55

4
p

6

p
55

4
p

42

1

4
p

42
matrices B and B00 connected by the transformation

B00 � �B00 ? Bt� ? B � M ? B , (13)

where t indicates a transposition. It turns out that

M �

2
66666664

11
16 2

5
p

2
16 2

p
30

16

p
55

16

2
5
p

2
16

3
8 2

p
15
8

p
110
16

2

p
30

16 2

p
15
8

5
8

p
66

16p
55

16

p
110
16

p
66

16
5
16

3
77777775

. (14)

Notice that M2 � M ? Mt � 1 as expected. This gives
the required transformation matrix for the states in the first
column of Table I.

We now turn to the problem of expressing our physical
operators in terms of operators satisfying (8). The vector
T is again useful. The operator jy, given in the last of
Eqs. (1), is a scalar with respect to T; suppressing the IR
(100), we write jy � a�0�. By coupling the spin and quasi-
spin ranks of 1

2 to 1, the other uy’s appear as the three
components of a�1�. All combinations of the vector a�1�
950
are devoid of jy and thus invariant with respect to phase
changes for sj . For single-electron operators like Hso, we
need to know the W and T assignments that occur in the
various products a�t�a�t0�. They can easily be found from
the fermionic nature of the a�t�, and are set out (with T
specified by the prefixed multiplicity �T � � 2T 1 1) in
Table II. Although the operators in this table do not con-
serve electron number, all those that overlap the char-
acterizations �S,Q,W� of Hso, namely, ���1, 1, �110����, are
potential contributors. There is only one operator H�QS�T

of the type H�11�2, and, being formed from a�1�a�1�, is an
invariant under sj phase reversals. There are, however,
two of the type H�11�0, and we might anticipate having
to form an appropriate linear combination of a�0�a�0� with
�a�1�a�1���0� to satisfy S � Q � 1. However, a�0�a�0� 	
jyj , and the condition that the overall orbital rank be 1,
as it is for Hso, excludes any sj term, just as it does in
the first of Eqs. (4). We can conclude that we have two
invariants we can use for Hso, namely, H�11�0 and H�11�2.

The operators of the type H�QS�T do not, in general,
conserve electron number. However, this is immaterial.
We may calculate them in the basis (11) by means of the
equation 8 9
����Q0S0�T 0C0kH�QS�Tk�QS�TC��� � 
�T 0� �T � �T ��1�2�Q0S0C0kH�QS�kQSC�
<
:
Q0 Q Q
S0 S S
T 0 T T

=
; , (15)
where the matrix element (ai , say) preceding the 9-j sym-
bol is reduced with respect to both Q and S. We write the
unknown values of ai for the four states �Q� �S�W of Table I
as the matrix

A �

2
664

a1 a4 0 a5
a4 a2 a6 a7
0 2a6 0 a8

2a5 2a7 a8 a3

3
775 . (16)

The zeros above are due to the spin selection rules. The
entries of A are now multiplied by the 9-j symbol and

�T 0� �T � �T ��1�2 to give a new matrix E�T �. We insist that
E�T � � M ? E�T� ? Mt for our two possibilities T � 0, 2.
Solving the two matrix equations simultaneously, we get

a1 � 2
3
2a6, a5 �

p
3

2
p

11
�
p

2a2 2 a6� ,

a3 �
p

5
22 �2

p
2 a2 1 9a6� ,

a7 �
21

2
p

110
�7a2 2 9

p
2 a6� ,

(17)

a4 �
p

3
2
p

2
�a2 1

p
2 a6�, a8 �

21
2
p

55
�9a2 1

p
2 a6� .
These equations are valid for any component of the IR
(110) appropriate to Hso. In particular, they hold for the
component for which UL � �11�1. Since the IR (11) of
G2 occurs twice in the Kronecker product �21�2 [13], a
simple proportionality between matrix elements is not ex-
pected; indeed, Eqs. (17) express six of the ai in terms
of the two others, a2 and a6. However, the first equation
gives a direct proportionality. When converted to a rela-
tion involving the classic double tensor V �11� of Racah [14],
where the superscripts now refer to spin and orbital ranks,

TABLE II. Classification of one-body operators in two differ-
ent group schemes.

Operator SO�21� 3 SOj�7� �T �W

a�1�a�1� �1108� 3 �000� 1�110� 3�000� 3�200� 5�110�
a�0�a�0� �010� 3 �110� 1�110�
a�1�a�0� �109� 3 �100� 3�000� 3�110� 3�200�
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it becomes

��� f6�210� �21�5LkV �11�k f6�210� �21�5L0��� � 2

q
5
2 ��� f4�211� �21�3LkV �11�k f4�220� �21�1L0��� (18)
for all L and L0. In getting this result, which goes beyond
what the Wigner-Eckart theorem would predict when ap-
plied to G2, we chose MQ values appropriate for each fN

according to the relation N � 2MQ 1 7 [15]. It should be
noted that Eq. (18) differs (by a sign) from what the tables
of Nielson and Koster [16] would give. Phase differences
of this kind come from the different choices inherent in the
formalism (3) and the electron model.

The above analysis is easily extended to deal with two-
electron operators. As an example, we choose the com-
ponent z6 of Hsoo with group labels �Q, S,L,W ,U� �
���2, 1, 1, �211�, �30���� [3]. An obvious sj invariant is the
form �a�1�a�1�a�1�a�1���T�. Being symmetric with respect
to an S-Q interchange, it can produce combinations of
the operators H�QS�T such as H�21�3 1 H�12�3 and H�21�2 2

H�12�2. Arguments similar to those that showed H�11�0 is
an invariant for Hso indicate that �a�1�a�1�a�0�a�0���2� (the
only other possible contributor to H�21�2 2 H�12�2) is also
an sj phase invariant for WU � �211� �30�. Equation (15)
can now be used for H�21�T 6 H�12�T with T � 3 and 2.
The matrix element on the right becomes

A �

2
66664

0 a4 0 0
a4 a2 a7 a8
0 2a7 0 a9
0 2a8 a9 0

3
77775

6

2
66664

a1 a4 a5 a6
a4 a2 0 a8

2a5 0 0 0
2a6 2a8 0 a3

3
77775 (19)

instead of (16), where the bars refer to the matrix elements
of the unwanted operator H�12�T . Fortunately, these matrix
elements can be converted to those of H�21�T by means
of the spin-quasispin interchange. This entails a parity
change in the electron number N [12]. Invariance under
(14) results in relations similar to those in (17); two of

them are a1 �
p

77 a6 and a5 � 2

q
2
5 a4. They lead to

analogs of (18):
��� f3�210� �21�2Lkz6k f
3�210� �21�2L0��� � 2

p
44 ��� f5�210� �21�2Lkz6k f

5�221� �21�2L0��� , (20)

��� f7�210� �21�2Lkz6k f
7�220� �21�4L0��� � 2

2
p

5
��� f6�210� �21�5Lkz6k f

6�211� �21�3L0��� . (21)

We can also start with states belonging to different IRs of G2. As examples, we cite the simple proportionalities

��� f5�210� �21�2Lkz6k f
5�221� �31�2L0��� � 3

p
2
��� f6�220� �21�1Lkz6k f

6�221� �31�3L0��� , (22)

��� f7�210� �21�2Lkz6k f
7�222� �40�2L0��� � 2

p
6 ��� f6�211� �21�3Lkz6k f

6�222� �40�1L0��� , (23)

��� f4�211� �30�3Lkz6k f
4�220� �22�1L0��� � 2

p
2 ��� f6�221� �30�3Lkz6kf

6�220� �22�1L0��� . (24)
Equations (20)–(24) go beyond the Wigner-Eckart
theorem for G2 since, in all cases, the product of the G2
IRs in the bra and ket contain (30) of z6 at least twice.
Preliminary work with other components of Hsoo yield
results of a similar kind. They are consequences of the
sj phase reversals and demonstrate very effectively the
relevance and power of the automorphisms of SO�8�.

We thank Dr. Jørgen E. Hansen for kindly providing us
with his very useful tabulation of the matrix elements of
Hsoo.
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