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We reconsider theories with low gravitational (or string) scale M� where Newton’s constant is gen-
erated via new large-volume spatial dimensions, while standard model states are localized to a 3-brane.
Utilizing compact hyperbolic manifolds we show that the spectrum of Kaluza-Klein modes is radically
altered. This allows the early Universe to evolve normally up to substantial temperatures, and completely
negates the astrophysical constraints on M�. Furthermore, an exponential hierarchy between the usual
Planck scale and the true fundamental scale of physics can emerge with only O �1� coefficients. The
linear size of the internal space remains small. The proposal has striking testable signatures.
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Recent work [1–4] has heralded a renewed interest
in higher-dimensional space-times, a key new concept
being the localization of matter, and even gravity, to
branes embedded in the extra dimensions [5]. In the
canonical example of [2], space-time is a direct product
of ordinary 4D space-time and a (flat) spatial d-torus of
common linear size R and volume Vnew � Rd , while
standard model particles are localized on a 3-brane of
thickness �M21

� , where M� is the new fundamental
higher-dimensional gravitational (or string) scale. The
low-energy effective 4D Planck scale MP is then given by
the Gauss’s Law relation, M2

P � M21d
� Rd . The hierarchy

between MP and M� can be very large if RM� ¿ 1.
For example, if d � 2 and R � mm, then M� � TeV.
The hierarchy MP�TeV thus becomes a problem of
understanding the size of the extra dimensions in such a
model [6].

Remarkably, models with R approaching the submil-
limeter range are not excluded [7], but astrophysics and
cosmology do place significant bounds. In particular, the
evolution of the early Universe at temperatures just above
those at the epoch of big bang nucleosynthesis (BBN) is
inevitably, and dramatically, altered. This narrow range of
normal evolution prior to BBN makes it difficult to imple-
ment baryogenesis, moduli dilution, etc.

The most important model-independent constraints on
such models arise from the production of light Kaluza-
Klein (KK) modes of the graviton. These KK modes are
the eigenmodes of the appropriate Laplace operator D on
the internal space, and it is of central importance in the
following that all the constraints depend on the form of
the spectral density of this operator, which in turn depends
completely on the topology and geometry of the internal
space.

In this Letter we argue that attractive alternate choices of
compactification imply significantly weaker constraints,
admitting, in particular, a standard 4D Friedmann-
Robertson-Walker (FRW) evolution up to high tempera-
tures. These compactifications employ a topologically
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nontrivial internal space—a d-dimensional compact
hyperbolic manifold (CHM). They also throw into a
new light the problem of explaining the large hierarchy
MP�TeV, since even though the volume of these mani-
folds is large, their linear size L is only slightly larger
than the new fundamental length scale (L � 30M21

� , for
example), thus only requiring numbers of O �10�.

CHM’s are obtained from Hd , the universal covering
space of hyperbolic manifolds (those admitting constant
negative curvature), by modding out by an appropriate
freely acting discrete subgroup G of the isometry group
of Hd [8]. (If G is not freely acting, then the resulting
quotient is a nonflat, nonsmooth orbifold. We will not
discuss this interesting case here.) These manifolds have
been much discussed recently as the possible structure of
ordinary 3-space [9], and play an important role in the the-
ory of classical and quantum “chaotic” systems, where the
spectra of Laplacian operators are also vital [10]. Here we
will consider space-times of the form M4 3 �Hd�Gjfree�
(M4 is a FRW 4-manifold) with metric

GIJdz
IdzJ � g�4�

mn�x�dxmdxn 1 R2
cg

�d�
ij �y�dyidyj . (1)

Here Rc is the physical curvature radius of the CHM, so
that gij�y� is the metric on the CHM normalized so that its
Ricci scalar is R � 21, and m � 0, . . . , 3, i � 1, . . . , d.

Because they are locally negatively curved, CHM’s exist
only for d $ 2. Their properties are well understood only
for d # 3, however, it is known that CHM’s in dimensions
d $ 3 possess the important property of rigidity [11]. As
a result, these manifolds have no massless shape moduli.
Moreover, the volume of the manifold, in units of the cur-
vature radius Rc, cannot be changed while maintaining the
homogeneity of the geometry. Hence, the stabilization of
such internal spaces reduces to the problem of stabilizing
a single modulus, the curvature length, or the “radion.”
Of course, in a complete high-energy theory (e.g., string
theory), there will be massive O �M�� excitations of the
would-be shape moduli, and, more important for the con-
straints, the massive KK modes.
© 2000 The American Physical Society
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To uncover the physics of these models one must
consider the spectrum of small fluctuations h in the
metric around the background equation (1), GIJ ! GIJ 1

eip.xhIJ �y�. There are three different types of KK fluctu-
ations that arise: hmn , the spin-2 piece; hij , with indices
only in the internal directions, giving spin-0 fields for the
4D observer; and the mixed case him, giving spin-1 4D
fields. The 4D KK masses of these states are the eigen-
values of the appropriate internal-space Laplacians acting
on h�y�, the correct Laplacian differing between these
three cases. In the most important spin-2 case the operator
is the Laplace-Beltrami operator DLB (the Laplacian on
scalar functions in the internal space), defined by

DLBf�y� � jg�y�j21�2≠i�jg�y�j1�2gij≠jf�y�� . (2)

There are no known analytic expressions for the indi-
vidual eigenvalues of DLB on a CHM of any dimension.
However, despite the extremely complicated topology and
geometry of CHM’s with arbitrarily large volume, a num-
ber of simple facts are generally true. First, by a variational
argument, the spectrum of DLB is bounded from below,
and the lowest eigenmode is just the constant function on
the CHM. This zero mode is the internal space wave func-
tion of the massless spin-2 4D graviton. As it is a constant,
the effective 4D Planck mass depends only on the volume
of the (highly curved) internal space.

For example, suppose that the internal space was a ball
of radius r , cut out of an H3 of curvature radius Rc. Its
volume Vol�r� grows exponentially for r ¿ Rc,

Volball�r� � pR3
c�sinh�2r�Rc� 2 2r�Rc� . (3)

In general, the total volume of a smooth compact hyper-
bolic space in any number of dimensions is

VolCHM � Rd
c e

a , (4)

where a is a constant, determined by topology. (For
d � 3 it is known that there is a countable infinity of ori-
entable CHM’s, with dimensionless volumes, ea , bounded
from below, but unbounded from above. Moreover, the ea

do not become sparsely distributed with large volume.) In
addition, because the topological invariant ea character-
izes the volume of the CHM, it is also a measure of the
largest distance L around the manifold. CHM’s are glob-
ally anisotropic, however, since the largest linear dimen-
sion gives the most significant contribution to the volume,
one can employ Eq. (3), or its generalizations to d fi 3, to
find an approximate relationship between L and VolCHM.
For L ¿ Rc�2 the appropriate asymptotic relation, drop-
ping irrelevant angular factors, is

ea � exp��d 2 1�L�Rc� . (5)

Thus, in strong contrast to the flat case, the expression
for MP depends exponentially on the linear size,

M2
P � M21d

� Rd
c e

a � M21d
� Rd

c exp��d 2 1�L�Rc� . (6)
The most interesting case (and as we will see later, most
reasonable) is the smallest possible curvature radius, Rc �
M21

� . Taking M� � TeV then yields
L � 35M21
� � 10215 mm . (7)

Therefore, one of the most attractive features of a CHM
internal space is that to generate an exponential hierarchy
between M� � TeV, and MP requires only that the linear
size L be very mildly tuned.

We now return to the important topic of the nonzero
eigenmodes of DLB on CHM’s, and to the astrophysical
and cosmological implications of these KK modes.
Recall that in flat models the KK modes are extremely
light, mKK $ R21 $ 1024 eV, and very numerous,
NKK � M2

P�M2
� # 1032 [2]. As a result, even though

these modes are individually only weakly coupled,
with strength 1�MP , they can be copiously produced
by energetic processes on our brane, and observational
limits then constrain the fundamental scale. The tightest
astrophysical constraint comes from supernova physics,
leading to a lower bound of M� $ 50 TeV if d � 2, and
of M� $ 3 TeV for d � 3 [7,12]. There are also severe
limits on the maximum temperature (the “normalcy tem-
perature” T�) above which the evolution of the Universe
must be nonstandard [7]. This temperature is found by
equating the rates for cooling by the usual process of adi-
abatic expansion, and by the new process of evaporation
of KK gravitons into the bulk. This gives T� # 10 MeV
for d � 2, up to T� # 10 GeV when d � 6. As we will
now see, for us the situation is much improved.

First, by the compactness of the internal space, the spec-
trum of DLB on a CHM is discrete and has a gap between
the zero mode and the first excited KK state. The size of
this gap is all important. Second, most of the eigenmodes
of DLB on a CHM have wavelengths less than Rc, and the
number density of these modes is well approximated by
the usual Weyl asymptotic formula

n�k� � �2p�2dV�d21�Vdk
d21, (8)

where V�d21� � Area�Sd21�. There can also be a few
lighter supercurvature modes, with wavelengths as large
as the longest linear distance in the manifold, and masses
thus bounded below by L21. There is no simple expression
for the spectral density of supercurvature modes, although
the Selberg trace formula provides some information on
the full spectrum of DLB. Nevertheless bounds on the first
nonzero eigenvalue are known. In the best-studied CHM
case of d � 2 we have the following theorem [13]: Con-
sider a compact (oriented) Riemann surface Sg of arbitrary
genus g $ 2, with metric of constant negative curvature
21. Then for every e there exists N [ Z1 such that for
g . N there exists an Sg with first eigenvalue,

l1�Sg� $ �C 2 e� , (9)

where C $ 171�784 by earlier work [13]. Restoring units,
a large enough volume (and thus genus) d � 2 CHM will
have first eigenvalue $171��784R2

c �. Moreover, Brooks
has conjectured that for d � 2 a typical CHM chosen
at random will have first eigenvalue $1�4R2

c with posi-
tive probability P, perhaps even with P ! 1 as the genus
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g ! ` [14]. The analogous conjecture in d � 3 is more
problematic, but has also been made [14]. Numerical stud-
ies of the spectra of even small volume d � 3 CHM’s
show that they have very few modes with l , Rc [15].

The crucial result is that the first KK modes are expo-
nentially more massive than the very light mKK $ 1�V 1�d

found in the flat case. This drastically raises the threshold
for their production. Even making the pessimistic assump-
tion that the spectral density of the supercurvature modes
satisfies Eq. (8) for k . 1�L, the astrophysical bounds
of [7] and [12] completely disappear since the lightest
KK mode has a mass (at least 30 GeV) much greater than
the temperature of even the hottest astrophysical object.
Similarly the large KK masses imply a much higher
normalcy temperature T�, up to which the evolution of
our brane-localized 4D Universe can be normal radiation-
dominated FRW. Approximate numerical evaluation
shows that T� is understandably sensitive to the gap to
the first nonzero KK mass, ranging from 2 to 10 GeV
(for d � 2 to d � 6) if mKK,1 � 1�L � TeV�35, and
from 20 to 40 GeV if mKK,1 � TeV�2 as suggested by
the Brooks conjecture. (In all cases taking M� � 1 TeV.
Raising M� raises T�.)

So far we have concentrated on the spectrum of DLB
appropriate for the spin-2 KK excitations. What about the
spin-0(1) excitations? In both cases the detailed form of
the Laplacian is modified. For example, in the spin-0 case
the correct operator is the Liechnerowicz Laplacian,

�DLLh�ij � 2�DkDkhij 1 Rikjlh
kl� , (10)

where Di is the covariant derivative. The Mostow-Prasad
rigidity theorem for CHM’s of dimension d $ 3 tells us
that DLL has no zero modes. Although we know of no
rigorous bounds for the first eigenvalue of this operator,
an inspection of the generalized Selberg trace formulas
supports the conjecture that the gap is of similar size to
the Laplace-Beltrami case, a result that is physically rea-
sonable. Finally for the spin-1 fluctuations him recall that
these zero modes would correspond to KK gauge bosons
(the original motivation of Kaluza and Klein), and are di-
rectly related to the continuous isometries of the compact
space. But, as a result of the quotient by G, CHM’s have no
such isometries, and thus there are no massless KK gauge
bosons. The nonzero KK modes once again have a mass
gap that is at least as large as 1�L and is more likely close
to �1�Rc, as in the previous cases. Thus these additional
types of fluctuation do not disturb our estimates.

We have not yet addressed why it is almost automatic
that there exist solutions of the form of Eq. (1). Since
CHM’s are just quotients of Hd by a discrete iden-
tification under G , Isom�Hd�, it is possible to find
solutions of our form whenever there exists a uniform
negative bulk cosmological constant (CC), given one
constraint: Rc � M21

� and ea � exp��d 2 1�L�Rc� ¿ 1
must be realized consistently with our ansatz of a fac-
torizable geometry with a static internal space, together
with the vanishing of the 4D long-distance (¿L) CC. To
930
ensure a static internal space, the small curvature radius of
the internal space must be balanced in the field equations
by the bulk CC, L41d � M41d

� . Both these quantities
contribute to the effective long-distance 4D CC, L4, on
our brane, and typically do not cancel. Furthermore, one
cannot just set L4 to zero by adjusting the tension or
energy density f4 of our 3-brane, because this requires
f4 ¿ M4

� , violating our basic assumption that a low-
energy effective theory is valid on the brane (and per-
turbing the geometry, possibly destroying our assumption
that it is factorizable). To address this problem we must
examine the form of the total 4D potential energy density
V , which in the effective theory depends only on Rc (ea

is an invariant), and which arises from the dimensional
reduction of the full bulk and brane actions [6].

For a 3-brane embedded in �4 1 d� dimensions, the bulk
and brane actions are, respectively,

Sbulk �
Z

d41dx
p

2jg�41d�j �Md12
� R 1 L 2 Lm� ,

(11)

Sbrane �
Z

d4x
p

2jginduced
�4� j �f4 1 · · ·� , (12)

with Lm the bulk matter field Lagrangian. Reduction of
these actions gives a 4D potential energy density of the
form

V �Rc� � LRd
c e

a 1 M4
�e

a�M�Rc�d22 1 Rd
c e

aW�Rc�

(13)

to which we must add the brane tension f4. The first
two terms arise from the �4 1 d� bulk CC term, and the
curvature of the internal space. Now consider expanding
W�Rc�, which comes from Lm, as a Laurent series in Rc

W�Rc� �
X
p
ap

M41d
�

�RcM��p
, (14)

with dimensionless coefficients ap . (Gauge or scalar field
kinetic energies can give such terms with p . 0 [6].) If
the determination of the minimum is dominated by a com-
petition between any two terms in V , then at this minimum
V � Vmin fi 0. Moreover, Vmin is enhanced by ea over the
“natural” value M4

� . However, the vanishing of the 4D CC
demands Vminjtot � 0. This cannot be achieved by adjust-
ing the brane tension such that jf4j # M4

� .
Fortunately there is an attractive alternative. If three

or more Rc-dependent terms in V �Rc� are all important at
the minimum (for example, the CC and curvature terms,
and one of the matter terms from W) then we can tune
the coefficients ap such that Vmin � 0, without needing
f4 ¿ M4

� . Thus, our basic assumptions remain consistent.
Moreover, this tuning is particularly natural in our case
precisely because we want the minimum to occur for a
curvature radius close to the fundamental scale Rc � M21

� ,
at which we expect the high-scale theory to produce many
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different terms that contribute roughly in an equal way.
(This is exactly the opposite situation from the large flat
extra dimension case where the minimum has to occur at
a length scale much greater than M21

� .) This one fine-
tuning is just the usual 4D CC problem, about which we
have nothing to add.

Having shown that there do exist solutions of our form,
another significant result follows from this analysis. The
most severe problem bedeviling the usual large extra di-
mension scenario is the radion moduli problem in the early
Universe [16]. In our case this problem is much weakened.
The radion, which is the light mode corresponding to dila-
tions of the internal space, gets its mass from the stabilizing
potential V �Rc�. Generally, in the flat extra dimension sce-
nario, the radion mass mr is of size M2

� �MP � 1023 eV, so
that it is very easily excited during the exit from inflation.
Furthermore, since its couplings are 1�MP suppressed, its
lifetime is longer than the age of the Universe, so that it
would unacceptably dominate our current expansion. In
our case, however, the radion mass is greatly increased be-
cause the second derivative of the potential at its minimum
is enhanced by a factor of ea , V 00

min � O �eaM6
� �. Thus

m2
r �

1
2

R2
cV

00�Rc�
eaMd12

� Rd
c

�
1
R2
c

, (15)

which is close to M2
� � TeV2. Therefore, the radion life-

time is T � M2
P�M3

� , much shorter than in the case of
flat extra dimensions, and only slightly longer than the
age of the Universe at nucleosynthesis, even if M� � TeV.
Moreover, it is (comparatively) easy to dilute away any un-
wanted radion oscillations by a period of late inflation.

While cosmologically and astrophysically much safer,
models with internal compact hyperbolic spaces do have
testable signatures accessible to collider experiments.
Since KK modes abound close to the fundamental scale,
standard model particle collisions with center-of-mass
energies near this scale will result in the production of
KK particles, detectable by a distinctive missing energy
signature [17]. Although this is qualitatively similar to the
scenario of [3], the spectrum of KK modes one will see
is quite distinctive. While the scale of KK masses is set
by R21

c , their ratios and multiplicities are in almost one-
to-one correspondence with the topology of the internal
manifold [18]. A full exploration of these experimental
signatures will require a more complete investigation of
the spectrum of large CHM’s, in particular, the issues of
isospectrality and homophonicity of such manifolds. It
is quite likely that such CHM’s have other implications
for higher-dimensional physics. Besides a more detailed
study of the question of radion stabilization, effects
such as wave function scarring [10] and brane-manifold
dynamics are currently under investigation.
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