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Nonperturbative Lorentzian Path Integral for Gravity
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We construct a well-defined regularized path integral for Lorentzian quantum gravity in terms of
dynamically triangulated causal space-times. Each Lorentzian geometry and its action have a unique
Wick rotation to the Euclidean sector. All space-time histories possess a distinguished notion of a discrete
proper time and, for finite lattice volume, the associated transfer matrix is self-adjoint, bounded, and
strictly positive. The degenerate geometric phases found in dynamically triangulated Euclidean gravity
are not present.

PACS numbers: 04.60.Gw, 04.20.Gz, 04.60.Kz, 04.60.Nc
There seems to be a broad consensus that a correct non-
perturbative treatment of quantum gravity should involve
in an essential way the full “space of all metrics” (as op-
posed to linearized perturbations around flat space) and
the diffeomorphism group, i.e., the invariance group of the
classical gravitational action,

S�gmn� �
k
2

Z
ddx

p
2 detg �R 2 2L�, d � 4 ,

(1)

with k21 � 8pGN and the cosmological constant L.
One approach that does not rely on the existence of su-

persymmetry tries to define the theory by means of a non-
perturbative path integral. The aim is not to evaluate this
in a stationary-phase approximation, but as a genuine “sum
over all geometries.” Since even the pure gravity theory in
spite of its large invariance group possesses local field de-
grees of freedom, such a sum must be regularized to make
it meaningful. The two most popular approaches, quan-
tum Regge calculus and dynamical triangulations (see [1]
for recent reviews), both employ simplicial discretizations
of space-time, on which then the behavior of metric and
matter fields is studied. One drawback of these (mainly
numerical) investigations is that so far they have been con-
ducted only for Euclidean space-time metrics gE

mn instead
of the physical, Lorentzian metrics. This is motivated
by the analogy with nonperturbative Euclidean (lattice)
field theories on a fixed, flat background, whose results
can under suitable conditions be “Wick rotated” to their
Minkowskian counterparts. The amplitudes expiS are sub-
stituted in the Euclidean path integral by the real weights
exp�2SE�. Real weight factors are mandatory for the con-
vergence of the state sums.

Unfortunately, it is not clear how to relate path integrals
over Euclidean geometries to those over Lorentzian ones.
For general metric configurations, there is no preferred
notion of “time” and hence no obvious prescription of how
to Wick rotate.

One might worry that with a discretization of space-
time the diffeomorphism invariance of the continuum
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theory is irretrievably lost. However, the example of
two-dimensional Euclidean gravity shows that this is not
necessarily so, since there one obtains agreement between
the scaling limit of the discrete theory and continuum
Liouville quantum gravity.

In the approach of dynamical triangulations, the sum
over all Euclidean metrics modulo diffeomorphisms is
approximated by a sum over all equilateral triangulations
of a given topological manifold. (It should be emphasized
that this is an intrinsically quantum formulation, and not
directly suitable as an approximation scheme for classical
gravity.) Since different triangulations correspond to dif-
ferent geometries, this regularization has no residual gauge
invariance. This makes it an appealing method for inves-
tigating quantum gravity theories, and extensive numeri-
cal simulations have been conducted in dimensions 2, 3,
and 4. Alas, in d � 3, 4 an interesting continuum limit
has not been found. This seems to be related to the domi-
nance of degenerate geometries. At small bare gravi-
tational coupling GN , the dominant configurations are
branched polymers (or “stacked spheres”) with Hausdorff
dimension dH � 2, whereas at large GN the geometries
“condense” around one or several singular links or vertices
with a very high coordination number, resulting in a very
large dH . These extreme geometric phases are separated
by a first-order phase transition. Another unsatisfactory
aspect of the Euclidean model is our inability to rotate
back to Lorentzian space-time.

In order to tackle these problems, two of us have re-
cently constructed a Lorentzian version of the dynamically
triangulated gravitational path integral in two dimensions
[2]. The individual geometries are glued together from
Lorentzian triangles in a way that satisfies certain causal-
ity requirements. The model is exactly soluble and its as-
sociated continuum theory lies in a new universality class
of 2D gravity models distinct from the usual Euclidean
Liouville gravity. One central lesson from this example
is that the causality conditions imposed on the Lorentzian
model act as a “regulator” for the geometry. Most impor-
tantly, they suppress changes in the spatial topology, that
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is, a branching of baby universes. As a result, the effec-
tive quantum geometry in the Lorentzian case is smoother
and in some senses better behaved: (a) In spite of large
fluctuations of the geometry, its Hausdorff dimension has
the canonical value dH � 2, unlike what happens in Eu-
clidean gravity, which has a fractal dimension dH � 4;
(b) in spite of a strong interaction between matter and grav-
ity when the system is coupled to Ising spins, the combined
system remains consistent even beyond the c � 1 barrier,
unlike what happens in Euclidean gravity [3,4].

Motivated by these results, we have constructed a dis-
cretized Lorentzian path integral for gravity in three and
four space-time dimensions. Unlike what happens in two
dimensions, the action is no longer trivial, and the Wick-
rotation problem must be solved. We have succeeded
in constructing a model with the following properties:
(i) Lorentzian space-time geometries are obtained by
causally gluing sets of d-dimensional Lorentzian building
blocks; (ii) all histories have a preferred discrete notion of
proper time t, counting the number of evolution steps of a
transfer matrix between adjacent spatial slices; (iii) for a
fixed space-time volume Nd , both the Euclidean and the
Lorentzian discretized gravity actions are bounded from
above and below; (iv) the number of possible triangula-
tions is exponentially bounded as a function of the space-
time lattice volume; (v) each Lorentzian discrete geometry
can be Wick rotated to a Euclidean one, defined on the
same (topological) triangulation; (vi) a “Wick rotation” is
achieved by an analytical continuation of the discretized
action in the dimensionless ratio a � 2l2

time�l2
space of

the squared time- and spacelike link length; (vii) for
finite lattice volume, the discrete transfer matrix is a
self-adjoint, bounded operator which is strictly positive;
and (viii) the extreme phases of degenerate geometries
found in the Euclidean models cannot be realized in the
Lorentzian case.

For the sake of definiteness and simplicity, we will
concentrate mostly on the three-dimensional case. The
discussion carries over virtually unchanged to d � 4 [5].
(Obviously, if these models yield sensible continuum
theories, we expect them to be very different, one describ-
ing a topological quantum field theory, and the other a
field theory of interacting gravitons.) The classical con-
tinuum action is simply Eq. (1), with d � 3. Each discrete
Lorentzian space-time will be given by a sequence of
two-dimensional compact spatial slices of fixed topology,
which for simplicity we take to be that of a two-sphere.
Each slice carries an integer time label t, so that the
space-time topology is I 3 S2. The metric data will be
encoded by triangulating this underlying space by three-
dimensional simplices with definite edge length assign-
ments. There are two types of edges: “spacelike” ones
(of length squared l2 � a2 . 0, with the lattice spacing
a . 0), which are entirely contained in a slice t � const.,
and “timelike” ones (of length squared l2 � 2aa2 , 0),
which start at some slice t and end at the next slice t 1 1.
A metric space-time is built up by “filling in” for all
times the three-dimensional sandwiches between t and
t 1 1. We consider only regular gluings which lead to
simplicial manifolds. Our basic building blocks are given
by three �m, n�-types of Lorentzian tetrahedra, where m
and n denote the numbers of vertices the tetrahedron shares
with the slices at t and t 1 1, and N31�t�, N13�t�, and
N22�t� their total numbers. Each triangulated space-time
carries a discrete causal structure obtained by giving each
timelike link an orientation in the positive t direction.

The discretized form of the Lorentzian action (1) is ob-
tained from Regge’s prescription for simplicial manifolds;
see [5] for details. The contribution to the action from a
single sandwich �t, t 1 1� is

DSa�t� � 4pak
p

a 1 �N31�t� 1 N13�t��
3 �akK1 2 a3lL1� 1 N22�t� �akK2 2 a3lL2� ,

(2)

with the rescaled cosmological constant, l � kL, and
where

K1�a� � p
p

a 2 3 arcsinh
1

p
3
p

4a 1 1

2 3
p

a arccos
2a 1 1
4a 1 1

,

K2�a� � 2p
p

a 1 2 arcsinh
2
p

2
p

2a 1 1
4a 1 1

2 4
p

a arccos
21

4a 1 1
,

L1�a� �

p
3a 1 1

12
, L2�a� �

p
2a 1 1

6
p

2
.

Note that the sandwich action (2) already contains appro-
priate boundary contributions, such that S is additive under
the gluing of contiguous slices.

At each time t the physical states jg� are parametrized by
piecewise linear geometries, given by unlabeled triangula-
tions g of S2 in terms of equilateral Euclidean triangles.
For a finite spatial volume N the number of states is expo-
nentially bounded as a function of N and the orthogonal
vectors jg� span a finite-dimensional Hilbert space HN .
The transfer matrix T̂N acts on the Hilbert space

H �N� :�
NM

i�Nmin

Hi ,

where Nmin denotes the size of the minimal triangulation
of the given topology (Nmin � 4 for S2), and the states jg�
will be normalized according to

�g1 j g2� �
1

Cg1

dg1,g2,
X
g

Cgjg� �gj � 1̂ .

The symmetry factor Cg is the order of the automorphism
group of the two-dimensional triangulation g, which for
large triangulations is almost always equal to 1. With each
925
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step Dt � 1 we can now associate a transfer matrix T̂N

describing the evolution of the system from t to t 1 1,
with matrix elements

�g2jT̂N �a� jg1� � Ga�g1, g2; 1� �
X

sandwich�g1!g2�
eiDSa .

The sum is taken over all distinct interpolating three-
dimensional triangulations of the “sandwich” with bound-
ary geometries g1 and g2, each with a spatial volume
#N . The propagator GN �g1, g2; t� for arbitrary time inter-
vals t is obtained by iterating the transfer matrix t times,
GN �g1, g2; t� � �g2jT̂

t
N jg1�, and the infinite-volume limit

is obtained by letting N ! `.
A brief remark is in order on our notion of time: The

label t is to be thought of as the discretized analog of
926
proper time. We do not claim that this is a physically dis-
tinguished notion of time, but it is nevertheless a possible
choice, in the present case suggested by our regularization.
In continuum formulations the proper time gauge is not
usually considered, because it is a gauge choice that—con-
sidered for arbitrary geometries—goes bad in an arbitrar-
ily short time. This problem does not occur in the discrete
case: By construction we sum only over space-time ge-
ometries for which there is a globally well-defined (dis-
crete) “proper time.”

The action S associated with an entire space-time S1 3

S2 of length t in time direction is obtained by summing
expression (2) over all t0 � 1, 2, . . . t and identifying the
two boundaries. The result is expressible as a function of
three “bulk” variables, for example, the total numbers N0
and N3 of vertices and tetrahedra and t,
Sa�N0, N3, t� � N0�4ak�K1 2 K2� 2 4a3l�L1 2 L2�� 1 N3�akK2 2 a3lL2�
1 t	4ak�p

p
a 2 2�K1 2 K2�� 1 8a3l�L1 2 L2�
 . (3)
Because of the well-known inequality N0 # �N3 1 10��3,
valid for all closed three-dimensional simplicial manifolds,
this implies the boundedness of the discretized Lorentzian
action at fixed three-volume. We write the partition func-
tion as

Za�k, l, t� �
X

T[Tt �S13S2�
eiSa�N0�T �,N3�T�,t�T��, (4)

with Tt�S1 3 S2� denoting the set of all Lorentzian tri-
angulations of S1 3 S2 of length t. A necessary con-
dition for the existence of a meaningful continuum limit
is the exponential boundedness of the number of pos-
sible triangulations as a function of N3. In our case, this
follows trivially from the same property for Euclidean tri-
angulations [6,7], since the Lorentzian space-times form
a subset of the former. Note that the convergence of the
partition function implies the absence of divergent “con-
formal modes.”

As it stands, the sum (4) over complex amplitudes has
little chance of converging, due to the contributions of
an infinite number of triangulations with arbitrarily large
volume N3. In order to make it well defined, one must
perform a Wick rotation, just as in ordinary quantum field
theory. Thanks to the presence of a distinguished global
time variable in our model, we can associated a unique
Euclidean triangulated space-time with every Lorentzian
history contributing in (3). It is obtained by taking the
same topological triangulation and changing the squared
lengths of all timelike edges from 2aa2 (Lorentzian) to
aa2 (Euclidean), leaving the spacelike edges unchanged.
We can then use Regge’s prescription for calculating the
(real) Euclidean action SE

a �N0, N3, t� associated with the
resulting Euclidean metric space-time (where a is always
taken to be positive). After some algebra one verifies that
by a suitable analytic continuation in the complex a

plane from positive to negative real a, the Euclidean and
Lorentzian actions are related by

S2a�N0, N3, t� � iSE
a �N0, N3, t� , (5)

for a . 1
2 . For a � 1 in (5) one rederives the familiar

expression employed in equilateral Euclidean dynamical
triangulations, namely,

1
i

S21 � SE
1 � 2ak�2pN1 2 6N3 arccos 1

3 �

1 a3lN3
1

6
p

2
. (6)

Our strategy for evaluating the partition function is now
clear: for any choice of a .

1
2 , continue (3) to 2a,

so that
X

T[Tt �S13S2�
eiSa�N0,N3,t� a!2a

!
X

T[Tt�S13S2�
e2SE

a �N0,N3,t�.

(7)

Because of the exponential boundedness, the Wick-rotated
Euclidean state sum in (7) is now convergent for suitable
choices of the bare couplings k and l. We can therefore
proceed in two ways: either attempt to perform the sum
analytically, by solving the combinatorics of possible
causal gluings of the tetrahedral building blocks (as has
been done in d � 2 [2]) or use Monte Carlo methods to
simulate the system at finite volume. Once the continuum
limit has been performed, we can rotate back to Lorentzian
signature by an analytic continuation of the continuum
proper time T to iT . If we are interested only in vacuum
expectation values of time-independent observables and
the properties of the Hamiltonian, we do not need to
perform the Wick rotation explicitly, just as in usual
Euclidean quantum field theory.

Let us now establish some properties of the discrete real
transfer matrix T̂ � T̂ �a � 21� of our model that are
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necessary for the existence of a well-defined Hamiltonian
ĥ, such that T̂ � e2aĥ. These will be useful in any proof
of the existence of a self-adjoint continuum Hamiltonian
Ĥ. It is difficult to imagine boundedness and positivity
arising in the limit from regularized models without these
properties. In our case, T̂N is symmetric, bounded for finite
spatial volume N , and strictly positive. The only nontrivial
property to show is strict positivity. Positivity, T̂N $ 0,
follows from the reflection positivity of our model under
reflection with respect to planes of constant t, for both
integer and half-integer t [5] (see also [8]). However, for
the existence of a Hamiltonian we must show that zero
cannot occur as an eigenvalue. It suffices to show that

�g1jT̂
2
N jg1� �

X
g

Cg�g1jT̂N jg� �gjT̂N jg1� . 0 (8)

for all states jg1�. From this it would follow that T̂2
N . 0,

which together with the positivity T̂N $ 0 would imply
the desired result. Since the right-hand side of (8) is a
sum of positive terms, we must show that for each jg1�
there is at least one state jg� with �gjT̂N jg1� . 0. It is
straightforward to show that a possible choice is given by
jg� � jgmin�, where gmin is the minimal triangulation of
two-volume 4 of the two-sphere. We deduce that the trans-
fer matrix is strictly positive, T̂N . 0, and that for finite
triangulations there is a self-adjoint Hamiltonian operator
ĥN which is bounded from below.

It should be emphasized that although the summation
in the path integral is performed in the “Euclidean sector”
of the theory, our construction is not a priori related to
any path integral for Euclidean gravity proper. The point,
already made in the two-dimensional case [2], is that we
sum only over a selected class of geometries, which are
equipped with a causal structure. Such a restriction incor-
porates the Lorentzian nature of gravity and has no analog
in Euclidean gravity. We therefore expect our Lorentzian
statistical mechanics model to have a totally different phase
structure from that of Euclidean dynamical triangulations.
This expectation is corroborated by an analysis of the “ex-
treme phases” of Lorentzian quantum gravity, to determine
which configurations dominate the path integral

ZE
a �k, l, t� �

X
T[Tt �S13S2�

e2SE
a , (9)

for either very small or very large k . 0. To make a di-
rect comparison with the Euclidean analysis [9,10], we set
without loss of generality a � 1 in Eq. (9) and rewrite the
Euclidean action (6) as SE

1 � k3N3 2 k1N1. In the ther-
modynamic limit N3 ! `, and assuming a scaling behav-
ior such that t�N3 ! 0, one derives kinematical bounds
on the ratio of links and tetrahedra, j :� N1�N3, namely,

1 # j #
5
4 .

This is to be contrasted with the analogous result in the
Euclidean case, where 1 # j #

4
3 . It implies that the

branched-polymer (or stacked-sphere) configurations,
which are precisely characterized by j � 4
3 , and which

dominate the Euclidean state sum at large k1, cannot be
realized in the Lorentzian setting. The opposite extreme,
at small k1, is associated with the saturation of the
inequality

N1 # N0�N0 2 1��2 , (10)

and in the Euclidean theory goes by the name of “crumpled
phase.” At equality, every vertex is connected to every
other vertex, corresponding to a manifold with a very large
Hausdorff dimension. Again, it is impossible to come
anywhere near this phase in the continuum limit of the
Lorentzian model. Instead of (10), we have now separate
relations for the numbers N

�sl�
1 and N

�tl�
1 of space- and

timelike edges,

N
�sl�
1 �

X
t

�3N0�t� 2 6� � 3N0 2 6t ,

N
�tl�
1 #

X
t

N0�t�N0�t 1 1� .

(11)

Assuming canonical scaling, the right-hand side of in-
equality (10) behaves like �length�6, whereas the second
relation in (11) scales only like �length�5.

We conclude that the phase structure of Lorentzian grav-
ity must be very different from that of the Euclidean theory
and that the extreme branched-polymer and crumpled con-
figurations cannot occur. This is another example of causal
structure acting as a “regulator” of geometry. It also raises
the hope that the mechanism governing the phase transi-
tion will be different and potentially lead to a nontrivial
continuum theory, in three as well as in four dimensions.
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