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It is shown that the general solution near a spacelike singularity of the Einstein-dilaton-p-form field
equations relevant to superstring theories and M theory exhibits an oscillatory behavior of the Belinskii-
Khalatnikov-Lifshitz type. String dualities play a significant role in the analysis.
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An outstanding result in theoretical cosmology has
been the discovery by Belinskii, Khalatnikov, and Lifshitz
(BKL) that the generic solution of the four-dimensional
Einstein’s vacuum equations near a cosmological singular-
ity exhibits a never ending oscillatory behavior [1]. (See
[2] for a summary of the evidence supporting the BKL
conjectural picture.) The oscillatory approach toward the
singularity has the character of a random process, whose
chaotic nature has been intensively studied [3]. However,
two results cast a doubt on the physical applicability, to
our universe, of the BKL picture. First, it was surprisingly
found that the chaotic BKL oscillatory behavior disap-
pears from the generic solution of the vacuum Einstein
equations in spacetime dimension D $ 11 and is replaced
by a monotonic Kasner-like power-law behavior [4].
Second, it was proved that the generic solution of the
four-dimensional Einstein-scalar equations also exhibits a
nonoscillatory, power-law behavior [5,6].

Superstring theory [7] suggests that the massless
(bosonic) degrees of freedom which can be generically
excited near a cosmological singularity correspond
to a high-dimension (D � 10 or 11) Kaluza-Klein-
type model containing, in addition to Einstein’s D-
dimensional gravity, several other fields (scalars, vectors
and/or forms). In view of the results quoted above, it
is a priori unclear whether the full field content of
superstring theory will imply, as a generic cosmological
solution, a chaotic BKL-like behavior, or a monotonic
Kasner-like one. In this Letter we report the result that
the massless bosonic content of all superstring models
(D � 10 IIA, IIB, I, hetE, hetSO), as well as of M
theory (D � 11 supergravity), generically implies a
chaotic BKL-like oscillatory behavior near a cosmological
singularity. (Our analysis applies at scales large enough to
excite all Kaluza-Klein-type modes, but small enough to
be able to neglect the stringy and nonperturbative massive
states.) It is the presence of various form fields (e.g., the
3-form in SUGRA11) which provides the crucial source
of this generic oscillatory behavior.
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Let us consider a model of the general form
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Here, the spacetime dimension D is left unspecified. We
work (as a convenient common formulation) in the Einstein
conformal frame, and we normalize the kinetic term of
the “dilaton” w with a weight 1 with respect to the Ricci
scalar. The integer p $ 0 labels the various p forms Ap �
Am1···mp present in the theory, with field strengths Fp11 �
dAp , i.e., Fm0m1···mp � ≠m0Am1···mp 6 p permutations. The
real parameter lp plays the crucial role of measuring the
strength of the coupling of the dilaton to the p form Ap
(in the Einstein frame). When p � 0, we assume that
l0 fi 0 (this is the case in type-IIB where there is a second
scalar). The Einstein metric gmn is used to lower or raise
all indices in Eq. (1) (g � 2 detgmn). The model (1) is, as
it reads, not quite general enough to represent in detail all
the superstring actions. Indeed, it lacks additional terms
involving possible couplings between the form fields [e.g.,
Yang-Mills couplings for p � 1 multiplets, Chern-Simons
terms, �dC2 2 C0dB2�2-type terms in type IIB]. However,
we have verified in all relevant cases that these additional
terms do not qualitatively modify the BKL behavior to be
discussed below. On the other hand, in the case of M
theory (i.e., D � 11 SUGRA) the dilaton w is absent, and
one must cancel its contributions to the dynamics.

The leading Kasner-like approximation to the solution
of the field equations for gmn and w derived from (1) is,
as usual [1],

gmndx
mdxn � 2dt2 1

dX
i�1

t2pi �x��vi�2, (2a)

w � pw�x� lnt 1 c�x� , (2b)

where d � D 2 1 denotes the spatial dimension and
where vi�x� � eij�x�dxj is a time-independent d-bein.
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The spatially dependent Kasner exponents pi�x�, pw�x�
must satisfy the famous Kasner constraints (modified by
the presence of the dilaton):

p2
w 1

dX
i�1

p2
i 2

√
dX
i�1

pi

!2

� 0,
dX
i�1

pi � 1 . (3)

The set of parameters satisfying Eqs. (3) is topologically
a �d 2 1�-dimensional sphere: the “Kasner sphere”.
When the dilaton is absent, one must set pw to zero in
Eqs. (3). In that case the dimension of the Kasner sphere
is d 2 2 � D 2 3.

The approximate solution (2) is obtained by ne-
glecting in the field equations for gmn and w: (i) the
effect of the spatial derivatives of gmn and w, and
(ii) the contributions of the various p-form fields Ap . The
condition for the “stability” of the solution (2), i.e., for the
absence of BKL oscillations at t ! 0, is that the inclusion
in the field equations of the discarded contributions (i) and
(ii) [computed within the assumption (2)] be fractionally
negligible as t ! 0. As usual, the fractional effect of the
spatial derivatives of w is found to be negligible, while the
fractional effect (with respect to the leading terms, which
are ~ t22) of the spatial derivatives of the metric, i.e.,
the quantities t2Rij (where Rij denotes the d-dimensional
Ricci tensor) contains, as only “dangerous terms” when
t ! 0, a sum of terms ~ t2gijk , where the gravitational
exponents gijk (i fi j, i fi k, j fi k) are the following
combinations of the Kasner exponents [4]:

gijk�p� � 2pi 1
X

�fii,j,k

p� � 1 1 pi 2 pj 2 pk . (4)

The “gravitational” stability condition is that all the expo-
nents gijk�p� be positive. In the presence of form fields Ap
there are additional stability conditions related to the con-
tributions of the form fields to the Einstein-dilaton
equations. They are obtained by solving, à la BKL, the
p-form field equations in the background (2) and then esti-
mating the corresponding dangerous terms in the Einstein
field equations. When neglecting the spatial derivatives
in the Maxwell equations in first-order form dF � 0
and d�elpwF� � 0, where d � �d� is the (Hodge) dual
of the Cartan differential d and Fp11 � dAp , one finds
that both the “electric” components

p
g elpwF0i1···ip and

the “magnetic” components Fj1···jp11 are constant in time.
Combining this information with the approximate results
(2) one can estimate the fractional effect of the p-form
contributions in the right-hand side of the gmn- and w-
field equations, i.e., the quantities t2T0

�A�0 and t2Ti�A�j
where T

m

�A�n denotes the stress-energy tensor of the p
form. (As usual [1] the mixed terms T0

�A�i , which enter
the momentum constraints play a rather different role and
do not need to be explicitly considered.) Finally, one
gets as dangerous terms when t ! 0 a sum of electric

contributions ~ t2e
� p�
i1···ip and of magnetic ones ~ t2b

� p�
j1···jd2p21 .
Here, the electric exponents e
�p�
i1···ip (where all the indices

in are different) are defined as

e
�p�
i1···ip �p� � pi1 1 pi2 1 · · · 1 pip 2

1
2

lppw , (5)

while the magnetic exponents b
�p�
j1···jd2p21

(where all the in-
dices jn are different) are

b
�p�
j1···jd2p21

�p� � pj1 1 pj2 1 · · · 1 pjd2p21 1
1
2

lppw .

(6)

To each p form is associated a (duality-invariant) double
family of stability exponents e�p�, b�p�. The electric (re-
spectively, magnetic) stability condition is that all the ex-
ponents e�p� (respectively, b�p�) be positive. This result
generalizes the results of [8] on the effect of vector fields
in D � 4. [The fact that, generically, the exponents e�p�

and b�p� are either .0 or ,0 shows that the addition of a
form cannot be described by a modification of the Kasner
constraints (3), as can the addition of a dilaton for which
T

m

�w�n � t22. This was observed in the vector case in [8].]
The main result reported here is that, for all superstring

models, there exists no open region of the Kasner sphere
where all the stability exponents g�p�, e�p�, and b�p� are
strictly positive. To define the set of stability conditions
for the various superstring models, let us review their field
content and give the values of the crucial dilaton couplings
lp . The simplest case is the massless bosonic sector of M
theory, i.e., of SUGRA in D � 11. In that case, there
is a 3-form and no dilaton. The parameters pMa , a �
1, . . . , 10, run over the 8-dimensional sphere S8

M defined
by

P
a�pMa �2 � 1 �

P
a p

M
a . The presence of a 3-form

A3 uncoupled to any dilaton implies that the electric and
magnetic stability exponents are, respectively, given by (5)
and (6) with p � 3, lp � 0, and d � 10, i.e., eM�3�

a1a2a3
�

pMa1
1 pMa2

1 pMa3
and bM�3�

a1···a6
� pMa1

1 · · · 1 pMa6
.

The D � 10 type-IIA string theory involves, besides
gmn and a dilaton w � F�

p
2 (with gs � eF being the

string coupling) a 1-form, a 2-form, and a 3-form. The
(Einstein-frame) dilaton coupling parameters of the forms
are l

A
1 � 3

p
2�2, l

A
2 � 2

p
2, and l

A
3 �

p
2�2, respec-

tively. Besides the dilaton Kasner exponent pAw , there are
nine metric exponents pAi , i � 1, . . . , 9. They run over S8

A
defined by Eqs. (3).

The D � 10 type-IIB string theory involves (besides
gmn) two scalars: the dilaton w � F�

p
2 and the R 2

R 0-form C0, two 2-forms B2�NS 2 NS� and C2�R 2

R�, and one “self-dual” R 2 R 4-form C4. The dilaton
coupling strengths of the forms are l

B
C0

� 2
p

2, l
B
B2

�
2
p

2, l
B
C2

� 1
p

2, and l
B
C4

� 0. [lBC2
refers to the more

complicated mixed coupling eF�dC2 2 C0dB2�2]. The
Kasner exponents pBw , pBi (i � 1, . . . , 9) run over S8

B de-
fined by Eqs. (3).

The D � 10 type-I string theory involves (besides gmn

and w) an SO�32� vector potential and a 2-form. The
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dilaton couplings are l
I
1 �

p
2�2 and l

I
2 � 1

p
2. The

Kasner exponents pIw , pIi (i � 1, . . . , 9) run, as for IIA
and IIB, on the S8

I defined by Eqs. (3).
Finally, the D � 10 heterotic string theories involve

(besides gmn and w) an SO�32� or E8 3 E8 vector poten-
tial and a 2-form. Their respective (Einstein-frame) dila-
ton couplings are l

h
1 � 2

p
2�2, l

h
2 � 2

p
2. The Kasner

sphere S8
h for phw , phi (i � 1, . . . , 9) is the same as for IIA,

IIB, or I.
Let us denote for each given theory “th” (where th �

M,A,B, I, h labels the theory) the full (finite) sequence
of stability exponents as wth

J �p�, where J labels all the
possible exponents within each theory. For example, when
th � M the label J takes 690 values corresponding to
the set �wMJ � � �gMabg , eM�3�

a1a2a3
, b
M�3�
b1···b6

�. The condition of
“Kasner stability” of each theory is that there exist an
open region of the corresponding Kasner sphere S8

th where
wth
J �p� . 0 for all the labels J. However, we have proven

that, for all theories, infJw
th
J �p� is strictly negative for all

values of p [ S8
th, except at a finite number of isolated

points where it vanishes.
Let us first consider M theory. We have proven a

stronger result, namely, that the electric stability condi-
tions alone are never fulfilled. If, at any point on S8

M , we
order the Kasner exponents as pM1 # pM2 # · · · # pM10,
the most stringent electric stability criterion involves
f0�p� � pM1 1 pM2 1 pM3 . To show that this func-
tion is nonpositive on the cell pM1 # · · · # pM10 of the
Kasner sphere, we maximize it subject to the constraintsP

�pMa �2 � 1,
P
pMa � 1. These constraints can be taken

into account by introducing two Lagrange multipliers.
After a straightforward (but rather long) exhaustive
analysis, we have found that fmax

0 � 0, this maximum
being reached only at p1 � · · · � p9 � 0, p10 � 1.

To deal with the type-IIA theory, we use the fact that
IIA is the Kaluza-Klein (KK) reduction of M on a circle.
This fact dictates the link between the field variables of the
two models. If we label by the letter y the compactified
dimension this link implies the following relation between
the (Einstein-frame) Kasner exponents of the two theories
(i � 1, . . . , 9):

pAw �
6
p

2pMy
8 1 pMy

, pAi �
8pMi 1 pMy

8 1 pMy
. (7)

Forgetting about this KK motivation [9], we can consider
that Eqs. (7) define a one-to-one map pAM from S8

M to S8
A:

pAa � pAM�pMb �. Using this map, we have then shown
that the complete set of IIA stability conditions is logically
equivalent to the complete set of M stability conditions.
The instability of the Kasner behavior of M theory proven
above then implies that the Kasner behavior of IIA is
also unstable.

To deal with the type-IIB theory, we use the fact that
IIA and IIB are related by T duality. The link between
the field variables of the two models dictated by T duality
922
[10] enables one to derive a certain fractionally linear map
pBA between their (Einstein-frame) Kasner exponents,
which can be used, as above, to prove the Kasner-stability
equivalence of the types IIA and IIB theories. Since type-
IIA is unstable, type-IIB is also unstable.

At this stage, we know that M, IIA, and IIB are
equivalent with respect to Kasner stability, and are all
unstable. It remains to tackle the type-I and heterotic
theories, which are equivalent because their stability
conditions are algebraically mapped onto each other by
the S-duality transformation pIw � 2phw ,pIi � phi . To
study the Kasner stability of the heterotic theory, we found
it very convenient to replace the Einstein-frame Kasner
exponents �phw ,phi � by their string-frame counterparts
�ahi �. The link between the two is (in d 1 1 spacetime
dimensions, see, e.g., [11])

pw �

p
d 2 1 s

d 2 1 2 s
, pi �

�d 2 1�ai 2 s

d 2 1 2 s
, (8)

with s � 	
P
i ai
 2 1 and i � 1, . . . , d. In terms of the

a’s the Kasner sphere Sd21 is simply the usual unit sphere,P
i�ai�2 � 1. In our case, d � 9 and one should add

a label “h” to both the p’s and the a’s. In terms of
the string-frame exponents it is found that the h-stability
conditions are equivalent to the simpler inequalities a

h
i .

0 and a
h
i 1 a

h
j 1 a

h
k , 1 (where i, j, k are all different)

subjected to the constraints
P
i�a

h
i �2 � 1. It is easy to

verify that these inequalities can never hold when the space
dimension is d � 9. In that case, the closest one comes to
satisfying the inequalities is at the isotropic point ai �
1�3 for which the second inequality is saturated. This
concludes our proof that the heterotic model (and therefore
also the type-I one) is Kasner unstable. Finally the two
blocks of theories �M,A,B� and �I, h� are both Kasner
unstable, though for different algebraic reasons.

Our results so far show that the generic solution of the
low-energy string models can never reach a monotonic
Kasner-like behavior. Following the BKL approach [1] one
can go further and study the evolution near a cosmological
singularity as a sequence of Kasner-like “free flights” in-
terrupted by “collisions” against the “potential walls” cor-
responding to the various stability-violating exponents g,
e, or b. We have studied this problem [12] and found the
following universal “collision law” giving the Kasner ex-
ponents p̄0m of the Kasner epoch following a collision in
terms of the old ones:

p̄0m �

µ
1 2 2

�w ? p̄� �w ? u�
�w ? w�

∂21

3

∑
p̄m 2 2

�w ? p̄�wm

�w ? w�

∏
. (9)

Here, p̄m stands for p̄0 � pw and p̄i � pi . The scalar
products are computed with the metric Gmn occurring
in the quadratic form entering the first Eq. (3), namely,
G00 � 1, G0i � 0, Gij � dij 2 1, while the vector u
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[entering the second Eq. (3)] has “covariant” components
u0 � 0, ui � 1. Finally, the “contravariant” vector wm

characterizes the “wall” responsible for the collision
and is defined in such a way that the correspond-
ing exponent [g�p�, e�p�, or b�p�] reads w�p� �
wmp̄m � Gmnwmp̄n . [For example, for the wall associ-
ated with the electric exponent e123�p� � p1 1 p2 1 p3,
wm reads w0 � 0, wi � 1 for i � 1, 2, 3 and wi � 0
for i . 3.] The result (9) (which is a rescaled geomet-
rical reflection in the hyperplane wmp̄m � 0) applies
uniformly to all possible walls: gravitational, electric, or
magnetic. It generalizes particular results derived by many
authors [13].

To summarize, in all string models, the generic solution
near a cosmological singularity for the massless bosonic
degrees of freedom exhibits BKL-type oscillations, i.e.,
a (formally infinite) alternation of Kasner epochs. The
primary sources of this BKL behavior are (i) the presence
of p forms in the field spectrum of the theories and,
(ii) the strength of their dilaton couplings. In the absence
of p forms, or if the lp’s were somewhat smaller, the
monotonic Kasner behavior would be stable and generic.
(When turning off the p forms, there is no electric or
magnetic stability condition to take into account and
one recovers the nonchaotic behavior of [4] and [5,6].)
The general rule defining the change of Kasner expo-
nents from one epoch to the next is given by Eq. (9),
where w is the wall (among the various gravitational,
electric, or magnetic ones) for which w�p� � wmp̄m

is most negative. We anticipate that the discrete dy-
namics (9) will define (in all string models) a chaotic
motion on the Kasner sphere. At this stage, the physical
consequences of such a chaotic motion are unclear. It
might constitute a problem for the pre-big-bang sce-
nario [14] which strongly relies on the existence, near
a (future) cosmological singularity, of relatively large,
quasiuniform patches of space following a monotonic,
dilaton-driven Kasner behavior. By contrast our findings
suggest that the spatial inhomogeneity continuously
increases toward a singularity, as all quasiuniform patches
of space get broken up into smaller and smaller ones
by the chaotic oscillatory evolution. In other words, the
spacetime structure tends to develop a kind of “turbulence”
[15]. This process can be meaningfully described by the
classical model (1) until either the curvature becomes
of the order of the string scale, or the string coupling
becomes large. (As in the original BKL case, we expect
that the total number of classically describable oscillations
is rather small [16].)

We are aware of the limitations of our result (tree-level
bosonic massless modes only) but we think that our find-
ing suggests that the full quantum, string-theory behavior
might be at least as complicated, near a cosmological sin-
gularity, as our simplified analysis shows.
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