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Phase Transitions from Preheating in Gauge Theories
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We show by studying the Abelian Higgs model with numerical lattice simulations that nonthermal
phase transitions arising out of preheating after inflation are possible in gauge-Higgs models under rather
general circumstances. This may lead to the formation of gauged topological defects and, if the scale at
which inflation ends is low enough, to electroweak baryogenesis after preheating.

PACS numbers: 98.80.Cq, 11.15.Ha, 11.15.Kc
Over the past few years there has been somewhat of a
revolution in our understanding of the dynamics of the end
of inflation. The traditional picture of reheating arising out
of the perturbative decay of the inflaton field as it oscil-
lates about the minima of its potential has been replaced by
the possibility of an explosive particle production during
an earlier period, known as preheating. During preheat-
ing, parametric resonance of the inflaton field generates
very large fluctuations of the scalar fields coupled to the
inflaton, leading to the production of large numbers of par-
ticles [1]. Because of the weakness of the interactions, the
short-wavelength modes do not thermalize, and the effec-
tive temperature of the long-wavelength modes is much
higher than in the standard reheating scenario. This may
lead to symmetry restoration and, when the Universe cools
down as it expands further, a subsequent nonthermal phase
transition [2]. The fact that the fluctuations produced dur-
ing preheating have large occupation numbers implies that
they can be considered as interacting classical waves, an
important result because it means that the dynamics of fluc-
tuations during and after preheating can be studied using
lattice simulations [3]. A concrete example of a nonther-
mal phase transition occurring after preheating was pre-
sented in Ref. [4] (see also Ref. [5]). The phase transition
that they found is first order, and depending on the field
content of the model being investigated topological defects
may form, an intriguing result as it opens up the possibility
that inflation can create a defect problem if, for example,
they produce gauged monopoles or domain walls [6–8].

Nonthermal phase transitions may even solve the old
puzzle of baryon asymmetry in the Universe [9]. Although
the baryon number is conserved perturbatively in the stan-
dard model, there are nonperturbative interactions that vio-
late this conservation law. The rate of baryon number
violation is extremely low at low energies, but it becomes
much higher in the high-temperature phase of the elec-
troweak theory. Thus it is possible to generate the observed
baryon asymmetry if, for some reason, the fields are out
of equilibrium at the electroweak scale and thermalize to
a temperature below Tc. This could be the case even in
the standard big bang cosmology, if the electroweak phase
transition were strongly first order, but at least in the mini-
mal standard model it is not, as lattice simulations have
0031-9007�00�85(5)�916(4)$15.00
shown [10]. However, in a nonthermal phase transition,
the fields are driven out of equilibrium by the oscillations
of the inflaton, and baryogenesis may be possible, if the
reheating temperature is much lower than Tc [11,12].

Despite the exciting possibility of electroweak baryo-
genesis, most of the numerical work on nonthermal phase
transitions so far has concentrated on scalar fields [4,6–8]
or has been restricted to one spatial dimension [11]. In this
Letter we present results from simulations of the Abelian
Higgs model in two rather different cases. The first case is
a direct analog of the simulations in Ref. [4]. The inflaton
itself is charged under a gauge group and eventually breaks
the gauge symmetry in a first-order phase transition. (For
simplicity, we use the terminology of spontaneous symme-
try breakdown, although the gauge symmetry is not actu-
ally broken in the Higgs phase.) The second case is more
relevant for electroweak baryogenesis. We show that even
with a Higgs mass that is compatible with experimental
bounds, the transition is sharp, and electroweak baryo-
genesis is therefore possible. Although we restrict our-
selves to the Abelian case in our simulations, we expect
that our conclusions apply to non-Abelian theories as well.

The Lagrangian of our model is

L � 2
1
4

FmnFmn 1 �Dmf��Dmf 2 l�jfj2 2 y2�2.

(1)

Here the gauge covariant derivative is Dmf � ≠mf 1

ieAmf, and Fmn � An;m 2 Am;n . The couplings l and
e are assumed to be small, and we will use l � e2 in our
estimates.

Ideally, we would like to study the quantum field the-
ory defined by Eq. (1), but solving for the time evolution
of even a simple quantum system is a formidable task.
Therefore we have to resort to the classical approxima-
tion, which is expected to work as long as the dynamics is
determined by modes with a macroscopic occupation num-
ber [3]. For studying the dynamics, it is convenient to fix
the temporal gauge A0 � 0 and use the conformal time h

defined by dh � dt�a and the rescaled fields f̃ � af,
Ẽi � 2≠hAi . The equations of motion for f̃ and Ai fol-
low from Eq. (1):
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≠2
hf̃ � DiDif̃ 1 �2ly2a2 1 ≠2

ha�a�f̃ 2 2ljf̃j2f̃ ,

(2)

≠hẼi � ≠jFij 1 2e Imf̃�Dif̃ , (3)

≠iẼi � 2e Imf̃�≠hf̃ . (4)

The initial conditions for the fields are those produced
by inflation: the gauge field is in vacuum and the covariant
derivatives of the Higgs field vanish. This allows us to fix
the remaining gauge degree freedom by setting initially
Ai � 0 and f � f0 � const.

We separate f into the homogeneous zero mode f and
the inhomogeneous fluctuations df � f 2 f. We take
the quantum nature of the system into account by intro-
ducing small fluctuations for the fields Ai and df and for
their canonical momenta Ei and dp � ≠hdf. The width
of these classical fluctuations is chosen to be equal to the
width of quantum fluctuations in the vacuum calculated
for free fields. We allow fluctuations in the phase of df

and fix the associated gauge degree of freedom by choos-
ing ≠iAi � 0. The longitudinal component of Ei is deter-
mined from the Gauss law (4).

In the very beginning of our simulation, when the fields
are in vacuum, the conditions required by the classical
approximation are not satisfied, but we expect that the
final results will be unaffected. What is important is not
the precise nature of the initial fluctuations, but that some
small fluctuations are present.

As in the scalar theory [2], the time evolution begins
with a period of parametric resonance. The resonance pa-
rameter q is given by q � e2�l. Let us first consider the
case q ¿ 1, in which the resonance is broad, and during
the first oscillations, a large amount of energy is trans-
ferred from the zero mode f to the long-wavelength modes
p � l1�2f0 of Ai and df, from which it soon spreads to
all modes with p & p� � ef0. We can approximate the
state of the system after this period by assuming that the
modes with p & p� thermalize to some effective tempera-
ture Teff, but those with p * p� remain in vacuum. Then
the energy density in these fluctuations is
r �
Z p� d3p

�2p�3 p2 Teff

p2 � p3
�Teff , (5)

and after preheating it is of the same order as the initial
energy density in the zero mode r0 � e2f

4
0, which

implies Teff � f0�e. In the reheating picture, the tem-
perature after the equilibration of the fields would be
Tr �

p
e f0 ø Teff.

Since the occupation number of the long-wavelength
modes is np � Teff�p, which is large when p & p� pro-
vided that e ø 1, the classical approximation works well
after preheating begins.

The zero mode f continues oscillating around the mini-
mum, but the fluctuations in df and Ai induce an effective
mass term

m2
eff � 22ly2 1 4l�df2� 1 e2�A2

i � . (6)

The magnitude of the fluctuation terms is

�df2� � �A2
i � �

Z p� d3p
�2p�3

Teff

p2 � p�Teff � f
2
0 . (7)

In the reheating picture, the fluctuation terms would be
much smaller, �df2� � �A2

i � � T2
r � ef

2
0. This shows

that m2
eff can become positive, thereby restoring the sym-

metry, even if the reheating temperature is below Tc.
When the Universe expands further, the fluctuation

terms decrease and the system undergoes a phase tran-
sition to the broken phase. The nature of this transition
can be studied by calculating the effective potential of
f in the background of the fluctuations df and Ai . If
e2 ¿ l, the contribution from Ai will be more important.
Taking the one-loop contribution from the gauge field into
account, we have

Veff� f � � 22ly2f
2

1 lf
4

1 Teff

Z p� d3p
�2p�3 log

p2 1 m2
A

p2 , (8)

where mA � ef is the photon mass generated by the
Higgs mechanism.

To understand the shape of the potential (8), we expand
it both for small and large f,
Veff� f � �

8<
:

m2
efff

2
2 C1e3Tefff

3
1 lf

4
, � f ø p��e� ,

C2Teffp3
� ln ef

p�
2 2ly2f

2
1 lf

4
, � f ¿ p��e� ,

(9)
where C1 and C2 are numerical factors and m2
eff is given

by Eq. (6).
The origin f � 0 is a local minimum whenever m2

eff is
positive. Assuming first that p� . ey, the cubic term in
Eq. (9) induces another minimum for the potential when
m2

eff becomes small enough, and eventually when this new
minimum becomes the global one the system enters the
Higgs phase in a first-order phase transition. While this
phenomenon is present also in equilibrium [13], the tran-
sition is stronger in our case, since the cubic term is pro-
portional to Teff ¿ Tr . The existence of this minimum
requires e2 * l, since otherwise the contribution from the
scalar loop, which does not contain any cubic term, would
dominate in Eq. (9).

Even if e2 & l, the potential can have two minima, pro-
vided that p� , ey [4]. Then the tree-level minimum
is the global one if the logarithmic term in Eq. (9) is
smaller than ly4, i.e., Teffp3

� & ly4. It is difficult to si-
multaneously satisfy this inequality, along with the con-
dition m2

eff . 0, and we were unable to do this in our
simulations.
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To confirm this expected behavior, we carried out a
numerical lattice simulation with our model. We chose
f0 � 0.25MPl and l � 2 3 10213, e � 6.4 3 1026,
y � 7.2 3 1024MPl. The lattice spacing was dx �
9.3 3 105M21

Pl , the time step dh � 1.2 3 105M21
Pl , and

the size of the lattice was 3203. The Universe was assumed
to be radiation dominated with a�h� � 1 1 hH, where
H � 8.3 3 1028MPl. Since f is not a gauge-invariant
quantity and can therefore be defined only in the vacuum,
we did not measure its value. Instead, we show jfj2

as a function of time in Fig. 1. The fact that jfj2 , y2

when 1.5 3 109M21
Pl & h & 3 3 109M21

Pl clearly shows
that the gauge symmetry is restored and the system is in
the Coulomb phase. The amplitude of the oscillations
remains quite large, which is probably a finite-size effect.
In an infinite system, there would be more infrared modes
to which the zero mode of f could decay. Eventually, the
system enters the Higgs phase in a first-order transition,
as in the scalar theory. The first-order nature of the
transition can be seen from the configurations during the
transition; for example, by looking at the isosurface of
jfj2 we would see a growing bubble of the Higgs phase
characterized by a larger value of jfj2.

In order to check that the separation of scales below
and above p� indeed takes place, we measured the effec-
tive temperature of different Fourier modes of the electric
fields Ei at various times during the simulation. A reason
for choosing this quantity rather than the power spectrum
of f̃ or Ai is that it is gauge invariant. In equilibrium
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FIG. 1. The time evolution of jfj2 in the first simulation on
a 3203 lattice with the initial condition f0 � 0.25MPl. That
jfj2 is below y2 indicates that the symmetry is restored. At
h � 3 3 109M21

Pl , the transition to the Higgs phase takes place.
The inset shows the effective temperature of different Fourier
modes of the electric field Ẽi measured at various values of h

(given in units of 109M21
Pl ). The energy density in the short-

wavelength modes is suppressed by a factor of 104 relative to
the long-wavelength modes even at the end of the simulation,
and therefore the discretization errors are expected to be small.
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jẼi,kj
2 is constant and its magnitude is proportional to the

temperature. Therefore we can use it to define the effec-
tive temperature of a single mode

Teff�p � k�a� �
1

2a
jẼT

i,kj
2 d3k

�2p�3 , (10)

where the superscript T indicates that we have included
only the transverse component kiẼ

T
i,k � 0, since the lon-

gitudinal component is fixed by the Gauss law. The inset
of Fig. 1 shows the product aTeff, which is the effective
temperature of the rescaled fields, as a function of the con-
formal momentum k � pa.

Immediately after preheating, the temperature of the
long-wavelength modes is Teff � 104MPl and the occupa-
tion number np � Teff�p��p � 1010 is huge. The cutoff
momentum is p� � k��a � 1026MPl�a. With time, the
modes with higher and higher k thermalize and the tem-
perature decreases, but since the couplings are small, this
process is very slow. The modes with k ¿ k� are strongly
suppressed even after the phase transition, and therefore
we believe that the lattice approximation remains reliable
even at the end of the simulation. Because the modes with
the highest momenta do not remain exactly in the vacuum,
discretization errors cannot be ruled out completely.

For the electroweak theory, the opposite case q , 1
is more relevant, since q � m2

W �m2
H . In this case, the

parametric resonance is narrow and the energy transfer
is less efficient. However, since the expansion rate of
the Universe is much slower in this case, it could still
lead to a similar phenomenon. Most of the energy of
the inflaton is transferred to a narrow momentum range of
the fluctuations, but the long-wavelength modes thermalize
and the energy is spread to all long-wavelength modes.
After that, the system should behave as in the case with
a broad resonance. In equilibrium, the phase transition is
not of first order if e2 . l, but as discussed earlier, we
expect the transition to be stronger in our case.

The realistic values for the couplings in the electroweak
theory would be l � e2 � 1, but in that case our simu-
lations are not reliable. With these couplings, the in-
teractions are important even in the vacuum state, and
the classical approximation cannot be trusted. Therefore,
we have used slightly smaller couplings, l � 0.04 and
e � 0.14, which allow us to use the classical approxima-
tion. The initial value of the Higgs field was f0 � 1 TeV.
We also chose y � 246 GeV and a�h� � 1 1 hH with
H � 0.7 GeV. The lattice spacing was dx � 1.4 TeV21,
time step dh � 0.14 TeV21, and the lattice size 2403.

In this case, f cannot be the inflaton, because its cou-
plings are much too strong. However, the homogeneous
initial condition for f may arise from a previous pre-
heating phase, in which f couples to the inflaton with a
coupling constant that is much smaller than e. Then the
parametric resonance will transfer a large amount of energy
to modes of f with very long wavelengths. The alternative
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FIG. 2. The time evolution of jfj2 in the second simulation
on a 2403 lattice with the initial condition f0 � 1 TeV. Again,
the symmetry is restored, and at h � 3 GeV21, the transition to
the Higgs phase takes place. The effective temperature measured
at various h (given in units of GeV21) in the inset shows that
in this case the resonance is narrower, but the temperature still
grows to high values.

possibility is that quantum fluctuations of f give it a large
spatial average during inflation.

As in the earlier case for the inflaton, we show jfj2

and the effective temperature of different modes of Ei

in Fig. 2. This time, the energy is transferred into a
narrow band of gauge field modes. Nevertheless, the long-
wavelength modes thermalize, and we reach a similar
situation to that in the first case, in which the long-
wavelength modes k & 300 GeV have an effective tem-
perature Teff � 104 GeV, and the symmetry is restored.
At h � 3 GeV21, the system undergoes a phase transition
to the Higgs phase. The transition is not of first order, but
it is still rather sharp.

In the electroweak theory, the conservation of baryon
number would be violated by sphaleron configurations
with a rate Gsph � a

5
WT5

eff�p� [14] when the symme-
try is temporarily restored, and as discussed in Ref. [15],
the oscillations of the Higgs field could create a large
baryon asymmetry. If the transition to the Higgs phase is
sharp enough, the baryon number violation ceases instan-
taneously, and the produced baryon asymmetry remains.

Our simulations show that a gauge-Higgs system ex-
hibits the same behavior as the scalar model considered
in Ref. [4]. The first case we considered shows that a
nonthermal phase transition is possible if the inflaton is
charged under a gauge group. Although we restricted our-
selves to an Abelian model, we believe that the qualitative
features of our results would be the same in non-Abelian
theories. In many models, this phase transition would
lead to the formation of cosmic strings or other topo-
logical defects.

The second case we considered has the qualitative fea-
tures of the electroweak theory, and we find that the sym-
metry gets restored although the parametric resonance is
narrow, provided that the expansion of the Universe is slow
enough. Unlike in the standard thermal phase transition
scenario, the transition to the Higgs phase is sharp, which
makes it possible to preserve the produced baryon asym-
metry. This supports the picture of electroweak baryogen-
esis at preheating.
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