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Semiclassical Real-Time Tunneling by Multiple Spawning of Classical Trajectories
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We systematically extend semiclassical real-time propagation methods based on Gaussian wave packets
by using the composition property of the time-dependent quantum-mechanical Green function. For the
first time, in an application to the problem of barrier tunneling, a semiclassical time-domain calculation of
the transmission probability exhibits good agreement with exact quantum mechanical values at energies
below the barrier top. Only two insertions of unity are needed for these results in a benchmark model
of reactive scattering.

PACS numbers: 03.65.Sq, 34.10.+x, 73.40.Gk
The problem of tunneling has been a fascinating one ever
since the advent of quantum theory because there seems to
be no straightforward explanation of the phenomenon in
terms of real-valued classical trajectories evolving in real
time in general. While successful approaches to under-
stand parabolic barrier tunneling by using real trajectories
in the Wigner picture do exist [1], the question if incoher-
ent and coherent tunneling in physically realistic systems
can be accounted for properly by real-time classical tra-
jectories has received considerable attention recently. Ini-
tiated by semiclassical investigations of barrier tunneling
using modified plane waves [2], several authors have em-
ployed Gaussian initial states with energetic components
above the barrier to study if the corresponding classical
trajectories, which can connect positions on opposite sides
of the barrier, give reasonable results for the transmis-
sion probability at energies below the barrier [3,4]. A
mathematically satisfactory semiclassical procedure has
not emerged yet, however. In an investigation of the semi-
classical propagator across a barrier it has, e.g., been stated
that classically allowed real-time trajectories are not, in
general, sufficient to explain tunneling amplitudes in the
energy domain [5]. Also for the coherent tunneling in a
double well potential, which has its origin in the splitting
between the lowest two energy levels, the question is still
unanswered if the doublet structure can be extracted from a
single semiclassical wave packet propagation. It has been
shown that by propagating a large number of initial wave
packets, one can extract tunnel splittings from the semi-
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classical dynamics but single wave packet results showed
no sign of the corresponding quantum beats [6].

The time-dependent semiclassical methods used in the
articles mentioned above have ranged from the van Vleck
propagator [7] to the initial value representation (IVR)
of the semiclassical propagator of Herman and Kluk
[8]. This last, Gaussian wave packet based methodology
avoids the classical root search problem indigenous to the
van Vleck propagator and has shown the greatest potential
recently in different applications in atomic, molecular, and
chemical physics [9,10]. It is known, however, that for the
problem of incoherent tunneling in an Eckart potential the
same kind of nonconvergence as reported in [3], using
the van Vleck propagator, has to be dealt with also in
calculations using the Herman-Kluk (HK) propagator
[4]. In order to remove these shortcomings, in the fol-
lowing we will present an extension of the method of
Herman and Kluk, which is in the same spirit as the
original (i.e., only using classical initial value trajectories)
but allows for a systematic improvement towards the
correct quantum result, in which tunneling is contained
by definition. It has been a long-standing challenge to
include hard quantum effects, like diffraction or tunneling,
in semiclassical theories. In order to deal with these
phenomena, semiclassical work in the energy domain
uses so-called bounces and instantons, i.e., imaginary
time trajectories [11], or diffractive orbits [12]. In this
Letter, however, we focus on a time-dependent semiclas-
sical viewpoint of the tunneling process [13] which has
© 2000 The American Physical Society 903



VOLUME 85, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 31 JULY 2000
conceptual advantages, e.g., for driven systems. Fur-
thermore, the numerical implementation of the uniform
semiclassical IVR propagator of Herman and Kluk leads
to a black box method which can be applied for any kind
of system dynamics and complexity. This feature of the
standard HK methodology is shared by the extended one
to be laid out subsequently.

The picture of diffraction at an obstacle is very help-
ful for understanding the physical content of the formal-
ism presented in the following. In a geometrical optics
context light and shadow regions of an obstacle are cre-
ated by a light source. Using real-time trajectories starting
at the source, how would these be able to penetrate into
the shadow region? This can, e.g., happen if a trajectory
reaching the edge of the obstacle is then allowed to spawn
new trajectories in all different directions in the spirit of
Huygens’ principle of wave optics. The same kind of ar-
gument also holds true for tunneling processes. If a tra-
jectory representing a particle approaches a barrier with
energy less than the barrier height, it cannot overcome this
barrier. By spawning off new trajectories with all kinds
of different energies, however, the particle can (at least
partially) overcome the barrier. The question is how to
allow for such a spawning procedure in a consistent way.
To reach this goal, in the following we will present a
systematic extension of the semiclassical HK approach
based on the multiple insertion of unity into the propa-
gator followed by suitable semiclassical approximations.

The methodology rests on the well known composition
property of the nonrelativistic quantum mechanical propa-
gator (time-dependent Green function)

K�x, t; x0, 0� � �xj exp�2iĤt�h̄�jx0�

�
Z

dx00�xj exp�2iĤt��2h̄��jx00�

3 �x00j exp�2iĤt��2h̄��jx0� , (1)

in the position representation for a system with an N-
component coordinate space vector x. Here the propa-
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gation over the time interval 	0, t
 has been “sliced” into
two steps over intervals of length t�2 by using exp�2iĤt�
h̄� � exp�2iĤt��2h̄�� exp�2iĤt��2h̄�� together with an
insertion of unity using the position space basis. The deci-
sive progress now is to invoke the semiclassical Herman-
Kluk approximation

K�x, t; x0, 0� �
Z dp0 dq0

�2p h̄�N
�xjgg�p0

t , q
0
t ��R�p0, q0, t�

3 exp�iS�p0, q0, t��h̄� �gg�p0, q0� jx0� (2)

for the successive propagators. In this expression
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represents a Gaussian wave packet with width parameter
g, which is centered around the initial phase space point
(p0, q0). S�p0, q0, t� denotes the classical action functional,
being the time integral of the Lagrangian, and the pre-
exponential factor R�p0, q0, t� contains a determinant of
submatrices of the classical stability matrix [8].

The next step after insertion of the semiclassical propa-
gators is to perform the x00 integration in Eq. (1) analyti-
cally. This leads to the emergence of a Gaussian factor
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Two integrations stemming from twice inserting Eq. (2)
into Eq. (1) are then left over, one over initial (indicated
by a single prime), the other over intermediate phase space
(double primes). The final expression is
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If the integrations over initial and intermediate phase space
are performed by a Monte Carlo procedure, the physical
content of Eq. (5) is that every trajectory of the swarm
starting out from an initial phase space point (p0, q0), when
it reaches the intermediate time t�2 spawns off a new
swarm of trajectories with initial phase space coordinates
(p00, q00) and not necessarily the same energy. The phase
space volume from which the new trajectories are drawn is
centered around the point (p0

t�2, q0
t�2) the initial trajectory

has reached at t�2 and is smoothly cut off by the Gauss-
ian weight factor in Eq. (4). This semiclassical time slic-
ing scheme can be used several times and for arbitrarily
long divisions of the time interval. We want to mention
that, with respect to energy nonconservation, the modified
semiclassical methodology resembles the stochastic ener-
getic jumps of trajectories in a classical trajectory Monte
Carlo study of proton hydrogen collisions [14].

Furthermore, we want to emphasize that by performing
the intermediate phase space integration in Eq. (5) nu-
merically exactly and not by the stationary phase method,
an improvement of the semiclassical results is to be
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expected. This is because stationary phase leads back
to the standard semiclassical result, while the procedure
proposed above could in principle be carried through
ad infinitum and would then lead to the exact quantum me-
chanical propagator in an analogous way as the (Riemann)
integral representation of the Feynman path integral [15],
which uses free particle short time propagators. It is not
the intention of this Letter to converge the numerics to the
full path integral result by using semiclassical propagators
for the short time steps [16], however. We want to
improve time-dependent semiclassics by using very few
time slices and will show in the following that a realistic
description of tunneling dynamics can be achieved by
using the proposed spawning procedure resting on the
HK propagator.

The problem to be studied in the remainder of this Letter
is the incoherent tunneling of a particle through a symmet-
ric Eckart barrier, centered around the coordinate origin. In
contrast to parabolic barrier scattering, this potential has
physical boundary conditions (reaching a constant value
at x ! 6`) and is widely used in different branches of
physics as a benchmark problem. For realistic parameters
we choose the barrier to represent a one-dimensional (1D)
model of the H 1 H2 exchange reaction studied previ-
ously in the same context [2–4,17]. A wave packet corre-
lation function formulation is then used for the calculation
of the S�E� matrix element for transmission through the
barrier [18].

In Fig. 1 full quantum results from a numerical wave
packet propagation based on the split operator formalism
are shown. We have depicted the correlation function

cba�t� � �Cbj exp�2iĤt�h̄� jCa� (6)

between a Gaussian wave packet �x jCb� centered to the
right [with g � 12 and (pb � 6, qb � 3) for the dimen-
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FIG. 1. Real part of the correlation function cba versus time.
Solid line: full quantum result; dotted line: standard semiclas-
sical result without time slicing. The box indicates the region
depicted in Fig. 2.
sionless wave packet parameters [3] ] and a propagated
Gaussian wave packet �x jCa� initially to the left of the
barrier (qa � 2qb) as a function of time (in units of
25.6 fs). The quantum results are compared to semiclassi-
cal HK results without time slicing. For short times there
is very good agreement, whereas for longer times the re-
sults (which need exceedingly many trajectories to be con-
verged) deviate more and more from the quantum ones
by lagging behind in time. At first sight it seems as if
this should not have a big effect on physically observable
quantities. However, in Ref. [3] it has been shown that
the opposite is the case already in the moderate tunneling
regime. Extracting the transmission probability by exactly
numerically Fourier transforming the time series and nor-
malizing the outcome to calculate Sba�E� [18], the slowly
oscillating behavior at long times becomes dominant for
energies below the barrier top (which is here at 0.425 eV).
Therefore the observed deviations in the time signal are
decisive for the incapability of standard time-dependent
semiclassical methods to describe tunneling probabilities
correctly. In previous studies, e.g., a nonconvergence of
the transmission probability with respect to the initial cen-
ter of the propagated wave packets has been observed [3,4].
The standard semiclassical time-domain methodology does
not only perform much poorer than uniform semiclassical
WKB or energy domain IVR techniques [17], but it is of
limited use for the tunneling problem from a mathematical
point of view.

The time-dependent semiclassical results thus need to
be improved, and we will investigate if this goal can be
reached by successive application of the extended semi-
classical procedure introduced above. In Fig. 2 the kind
of improvement is shown that can be achieved by apply-
ing the spawning procedure once or twice in the course
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FIG. 2. Real part of the correlation function. Solid line: full
quantum result; dotted line: standard semiclassical result; dash-
dotted line: semiclassical result with one additional spawning of
trajectories; dashed line: semiclassical result with the spawning
procedure applied twice.
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of time. The initial parameters of the propagated wave
packets are the same as for the standard semiclassical cal-
culation, and we have just shown the long time behavior
(indicated by the box in Fig. 1) because only there has a
significant discrepancy between semiclassics and quantum
mechanics been observed. The slicing times were chosen
well before the significant deviations in Fig. 1 occur. Al-
though an optimization procedure for the choice of slicing
parameters has not been applied and still needs to be de-
vised (slicing at half time T�2 is best suited for the result
at a fixed time T but here we need the result over a whole
range of time), a remarkable gradual improvement (dash-
dotted and dashed line) towards the exact quantum result
(full line) can be achieved by this procedure. How does
this affect the energy dependent transmission probabilities,
however?

In order to answer this question, we have extracted the
quantities P�E� � jSba�E�j2 numerically from the quan-
tum and different semiclassical correlation functions and
have plotted the results versus energy in Fig. 3 together
with the uniform WKB result. The big discrepancy in
the logarithmic plot between the quantum and the time-
dependent semiclassical result without time slicing is strik-
ing. Well in the tunneling regime, at E � 0.3 eV (the
energy of the barrier top is indicated by the arrow in
Fig. 3), the standard semiclassical result (dotted line) is
smaller by more than a factor of 2.4 than the quantum one
(solid line). In contrast, the result for the transmission
probability extracted from the time signal with two addi-
tional spawning procedures (dashed line) is much closer
to the full quantum one and exhibits only a deviation by
less than 20% at E � 0.3 eV. This is even better than
the agreement that can be achieved by the application of

0.25 0.35 0.45
E [eV]

10
−3

10
−2

10
−1

10
0

P
(E

)

FIG. 3. Logarithmic plot of the transmission probability as a
function of energy (in units of eV). Solid line: full quantum
result; dotted line: standard semiclassical result; dashed line:
semiclassical result with two spawnings; long dashed line: uni-
form WKB result. The arrow indicates the barrier height in the
1D model of the H 1 H2 reaction.
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the energy-dependent uniform WKB approximation (long
dashed line in Fig. 3). The overshooting of the improved
semiclassical result for energies around the barrier top is
reminiscent of similar behavior of the standard HK solu-
tion (occurring at slightly higher energies [4]) which could
be removed by additional time slicing.

We have proposed an extension of semiclassical real-
time propagation methods which rests on enabling the
classical trajectories to send out swarms of new trajec-
tories at certain points in time. Using this methodology,
we have shown that, by applying a very small number of
time slicings accompanied by the spawning procedure,
the shortcomings with respect to tunneling dynamics of
previous time-dependent semiclassical calculations can
be successively removed. This is the first time that for a
so-called hard quantum effect, like the incoherent tunnel-
ing through an Eckart barrier, semiclassical time-domain
results as good as or better than uniform WKB results
have been reported. Thus, we have reached the goal to
demonstrate that real-time classical trajectories do account
for quantum-mechanical tunneling if they are allowed to
spawn off new ones in the course of time. Obviously, the
number of trajectories to be propagated increases with
every additional time slicing procedure. The calculations
can be started with a relatively small number of trajecto-
ries in the beginning, however. Every insertion of unity
then increases the number of trajectories to be propagated
by about 3 orders of magnitude. It would be worthwhile
to explore how well this procedure works in other circum-
stances. In this respect, we want to emphasize that the
proposed time-dependent methodology is not restricted
to one-dimensional, autonomous problems and can in
principle be improved step by step through additional
insertions of unity. It is therefore much more flexible than
standard semiclassical methods.
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