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Nonlinear Cyclotron Resonant Wave-Particle Interaction in a Nonuniform Magnetic Field
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Quasilinear analysis of wave-particle interactions is presented for plasma flowing in a weakly nonuni-
form magnetic field configuration. The method presented is based on a scale separation between the
length scales of quasilinear relaxation and the magnetic field inhomogeneity, allowing one to obtain large
scale solutions for both particle distribution functions and wave spectra, without going into the details
of the small scale quasilinear relaxation. The numerical example shows the existence of a secondary
instability for an initially stable particle distribution function.

PACS numbers: 52.35.Bj, 52.35.Mw, 96.50.Ci
The quasilinear theory of wave-particle interactions was
originally formulated in a homogeneous plasma approxi-
mation [1–4]. It was discovered soon afterwards that even
a small inhomogeneity of the plasma parameters leads to
significant changes in the nature of the quasilinear relaxa-
tion process, due to effects such as breaking of the reso-
nance conditions (resonance broadening) and limits on the
time of resonant interaction [5].

There is large class of problems, arising mostly in astro-
physical contexts, where the plasma with inhomogeneous
parameters is embedded in a weakly nonuniform magnetic
field. Physical examples include configurations used to
model solar coronal heating and solar wind acceleration
[6]. In particular, the recent observations by the Solar and
Heliospheric Observatory of preferential ion heating and
acceleration [7] provide an extensive framework for devel-
opment of coronal heating models and application of the
method developed below.

These problems can be described as having two length
scales of evolution: (i) the scale of the magnetic field in-
homogeneity and (ii) the scale of quasilinear relaxation,
that is, of the order of several Larmor radii. The ratio of
the scales in some cases may be quite large (105 106).
For more than 20 years these problems were treated ei-
ther by application of homogeneous quasilinear diffusion
analysis or by direct particle simulations. In both cases the
solutions obtained were strictly applicable only to small re-
gions, with scales comparable to or only slightly exceeding
the typical scales of homogeneous quasilinear relaxation.
No large scale solutions have as yet been presented.

The purpose of this Letter is to outline in simplified
form a method for deriving and obtaining a solution for
the large scale equations. (The preliminary application of
the method to solar wind acceleration and heating was re-
ported at the Fall’98 American Geophysical Union (AGU)
meeting [8] and adopted at the Fall’99 AGU [9].)

We consider a system consisting of protons and some
resonant particles (either tail protons or ions) with den-
sity n0 and mass m̃mp (mp is the proton mass). All par-
ticles enter a region with a nonuniform magnetic field and
have some average speed U0 directed along the magnetic
field (U0 considerably exceeds the thermal velocity yT of
0031-9007�00�85(1)�90(4)$15.00
the particles). For the sake of simplicity we assume that
all plasma parameters depend only on one coordinate, z,
directed along the external magnetic field Bz�z�. We in-
troduce a parameter characterizing the ratio of the rele-
vant scales, l � V0z0�U0 ¿ 1, where V0 � eB0�mpc
is the proton cyclotron frequency at the point of entry
[B0 � Bz�0�], and z0 is some characteristic scale of mag-
netic field inhomogeneity z0 � j�1�Bz� �dBz�dz�j21. We
also assume that some particles are in cyclotron resonance
with Alfvén waves injected into the plasma flow and that
the waves have an initially wide spectrum with a power
law distribution. The waves are moving with phase speed
yw�z� with respect to the plasma. The spectrum comprises
wavelengths that are small in comparison to the inhomo-
geneity scale z0, so that the approximation of geometrical
optics can be applied.

We will choose the energy u � 2E � �y2
� 1 y2

z � and
the perpendicular magnetic moment m � y

2
��2Bz as in-

dependent variables instead of yk, y�, and will use di-
mensionless variables, z, yw�z�, u, and m, normalized
by z0, U0, U2

0 , and U2
0 �B0, respectively. We also intro-

duce dimensionless magnetic field variables B6 � �Bx 6

iBy��B0, the magnetic field Fourier mode b6�v, k�, and
phase f6�v,k, z, u, m� of particle rotation in a wave field
with frequency v and wave number k. The phase can
be calculated, using a system of reference moving with
particle speed yz , as a difference in particle rotation and
magnetic field vector rotation,

f6�v, k� � 2
Z z

z0

dz
yz

�v 2 kyz 6 Vh� . (1)

The linear response of the particle distribution function
f1 to the presence of waves can be obtained by integrating
the particle kinetic equation along the zero order trajec-
tories and asymptotically expanding the resulting integral
afterwards. The result may be written as (we omit the
derivations here and below to conserve space; see [10,11]
for derivations of similar expressions)

f6
1 �v, k� � i

p
l

2

(
1p
jf6

zzj

m
p

2mBz
L̂f0

)

3 �b6�v, k�ei�lf61D6p�4� 2 c.c.� , (2)
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where L̂ is the operator

L̂ �

µ
1 2

yw
p

u 2 2mBz

∂
≠

≠m
2

2ywBz
p

u 2 2mBz

≠

≠m
,

(3)

and f6
z � ≠f6�≠z, f6

zz � ≠2f6�≠z2, D6 � sgn�f6
zz�.

The equation of quasilinear diffusion can be obtained
(see [10,11]) as

≠f0

≠z
1

l3�2

2
p

2p

Z
dk dv d�v 2 vk� 3

L̂

(
jb�v, k�j2p

f6
zz

m

Bz
L̂f0

)
� 0 . (4)

The delta function d�v 2 vk� restricts the integration
over v to propagating waves, that is, to waves that sat-
isfy the local dispersion relation vk � v�k, z�.

The equation for the particle distribution function f
should be supplemented by the corresponding equation for
the evolution of the wave spectrum jb�v, k�j2. Using the
geometrical optics approximation it can be written (see
[11]) as

≠v

≠k
≠jbj2

≠z
2

≠v

≠z
≠jbj2

≠k
� l3�2g6�v, k� jbj2, (5)

where g6�v, k� is growth or damping rate due to resonant
interaction with the particles. It can be obtained from the
linear theory using (2) (see [11]) as

g6 �
h0ywBz

2
p

2p

Z m
p

u 2 2mBz

L̂f0p
jf6

zzj
dm du , (6)

where h0 is the ratio of the particle energy to the wave
energy at z � z0.

Equations (4) and (5) describe the self-consistent evolu-
tion of particles and waves due to resonant interaction in a
plasma in a nonuniform magnetic field. The large parame-
ter l3�2 in these equations simply confirms that quasilinear
evolution is a much faster process than the changes induced
by weak inhomogeneity of the medium. It is the presence
of this large coefficient that makes a direct solution of this
system of equations practically impossible.

To develop a practical method of treating this system of
equations we must find a way to avoid resolving the micro-
scopic dynamics of quasilinear relaxation on short length
scales. First, note that the total energy flux is conserved.
Hence, integrating (4) and (5) we may write the energy
flux conservation asZ ∑

≠v

≠k
≠jbj2

≠z
2

≠v

≠z
≠jbj2

≠k

∏
dk dv d�v 2 vk�

� 2
h0

2
≠

≠z
Bz

Z
dm du uf0 . (7)

Although this expression represents conservation of the
energy flux integrated over the entire wave spectrum, we
may assume that it is valid for every spectral subinterval
or for the spectral density of the energy flux. Indeed,
at every distance z the interaction between the particles
and the waves takes place only in the vicinity of the local
resonance. Hence, we may use the condition of the local
resonance f6

z � 0 to transform the integral over u in (7)
to an integral over v. We obtain for jb�v, z�j2

jbj2 �
h0Bz

2

Z
dm

µ
≠f6

z

≠v

¡
≠f6

z

≠u

∂
uf0 1 C , (8)

where u should be obtained from the resonant condition
f6

z � 0.
Although Eq. (8) does not have the small scales any-

more, it cannot be solved directly, because it includes
an unknown distribution function f0. Taking into ac-
count that the magnetic field is only weakly nonuniform/
inhomogeneous, we can substitute the stationary solution
of the uniform/homogeneous quasilinear equation in place
of f0, that is, the solution of the equation

jb�v, k�j2L̂f̃0 � 0 . (9)

Using the variables w � u 2 2yw
p

u 2 2mBz and yz �p
u 2 2mBz , it is easy to show that the solution of the

above stationary problem can be written as a function
which is constant along the lines of pitch angle diffusion
w � y

2
� 1 �yz 2 yw�2 (see [3]). In this case, we can

write f̃0 � f̃0�z, w� and, after changing the variable of in-
tegration in (8), we get

jbj2 � C 1
h0yw

4v2Bz

"
6

Z `

w0

dw wf̃0
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#
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(10)

where w0 � �Bzyw�m̃v�2. Therefore, if the wave energy
is sufficiently large the change of wave energy in the high
frequency part of the spectrum (v ! `) will be propor-
tional to v22.

The stationary solution will form in the entire area of
resonance only if there is enough energy contained in ev-
ery part of the wave spectrum. If this is not the case, the
quasilinear diffusion will stop before forming a “plateau”
along the lines of diffusion w in the whole region. Equa-
tion (9) will still be satisfied, because jb�v, k�j2 becomes
zero in parts of the spectrum with insufficient energy. In-
dependent plateaus will be formed between each of these
insufficient energy regions. In this case we can create the
procedure for obtaining the solution numerically.

First of all, we introduce new coordinates w, c directed
perpendicular and parallel to the lines of diffusion,

y� �
p

w sinc , yz �
p

w cosc 1 yw . (11)

In these coordinates the solution for the plateau distribution
function f̃0 can be found from the conservation of the
particle density flux for every value of w and in every
interval (c1, c2),

f̃0�z, w� �
1

A�c2� 2 A�c1�

3
Z c2

c1

dc y��w, c�yz�w, c�f0 , (12)
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where the normalization factor A�c� � 21�2w cos2c 2p
w yw cosc. The limits of integration c1,2 are functions

of z and yz (or v) and should be determined either from the
boundaries of the resonance region or from the frequencies
where jb�v, k�j2 becomes equal to zero.

Now we will use (12) to obtain the procedure for deter-
mining f0 simply by advancing in z starting from z � 1
and using some step Dz. Writing Taylor expansion of
f0�z, w, c� and substituting it into (12) we will get

f̃0�z, w� �
1

A�c2� 2 A�c1�

3
Z c2

c1

dc y�yzf0�z 2 Dz, w, c�

1 Dz
Z c2

c1

dc y�yz
≠f0

≠z
1 . . . . (13)

Substituting the derivative ≠f0�≠z from the quasilinear
equation (4) and taking into account that the operator L̂
in w, c coordinates has the very simple form,

L̂ � 2
Bz

y�yz

≠

≠c
, (14)

we can easily find that the last term in (13) is equal to zero
(the limits of integration correspond to jb�v, k�j2 � 0 or
m � 0).

We once again use the weak nonuniformity of the
medium and replace the exact distribution function
f0�z 2 Dz, w, c� in (13) by the homogeneous solution
formed on the previous step f̃0�z 2 Dz, w, c� � f̃0���z 2

Dz, w�z 2 Dz����. After that, we can write the system of
equations for the large scale evolution as

jbj2 �
h0Bz

2

Z
dm

µ
≠f6

z

≠v

¡
≠f6

z

≠u

∂
uf̃0�z, m, u� 1 C ,

(15)

f̃0�z� �
1

A�c2� 2 A�c1�

Z c2

c1

dc y�yzf̃0�z 2 Dz� .

(16)
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Note that we normalized z by the scale of the inhomogene-
ity z0. Therefore the condition of small step size Dz ø 1
means that it should be small in comparison with the in-
homogeneity scale and may be comparable or even larger
than the scale of quasilinear relaxation.

As an example, we obtained a numerical solution of
system (15)–(16) for a weakly nonuniform magnetic field
of the form Bz�z� � Bz�1��z2 (z $ 1). The phase
speed of the waves was also taken to be a function of
distance, yw�z� � U0 1 y0

w�z (where y0
w�U0 � 1.5).

This demonstration model can be considered as an
oversimplified model of resonant interaction of heavy
ions or tail protons with Alfvénic turbulence in the solar
wind stream. Because of the large difference of scales of
inhomogeneity and quasilinear diffusion the solution
looks like a wave slowly moving on the particle
distribution function with instant pitch-angle diffusion
taking place at the front of the wave. Figure 1 shows the
evolution of the particle distribution function f�z� with
distance at four different positions. The discontinuity in
the distribution function is not a numerical artifact. It
usually exists in solutions of homogeneous quasilinear
equations as well and can be explained by the finite size
of an area of the resonance. The corresponding plots of
the wave spectral density jb�v, z�j2 are shown in the next
figure (Fig. 2). The initial wave spectrum is taken to be
proportional to v21. The resonant interaction results in
the evolution of both the distribution function and the
high frequency part of the wave power spectrum. The
example exhibits one very interesting feature. As one can
see from Fig. 2, in addition to damping of high frequency
waves, the inhomogeneous quasilinear relaxation may
result in wave growth, although a locally homogeneous
quasilinear analysis of the distribution function in all
panels of Fig. 1 leads to the conclusion that the
distribution function is stable. In order to understand the
nature of this secondary instability, we should take into
account that the wave phase speed decreases with
distance. Therefore, the particles located in the left part of
FIG. 1. Contour lines of particle distribu-
tion function f�x� in the �yz ,

p
m � plane

at four different distances. The left part
of the distribution function in (b)– (d) rep-
resents a quasilinear plateau formed due
to wave-particle interaction (�yz� is the
average velocity of the distribution).
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FIG. 2. Wave spectral density jb�v�j2
plotted at the same distances as in the pre-
vious figure. The lower panel is a detailed
plot of the boxed part of the upper panel.
The frequency v normalized to the initial
cyclotron frequency V0. The initial wave
spectrum is �v21.
the distribution function in panels (b)–(d) (Fig. 1), where
the quasilinear plateau has already been formed, will fall in
resonance with waves having smaller phase velocity as
they move further downstream, and can transfer their en-
ergy to the waves.

In conclusion we have presented an analysis based on
a scale separation between the length scales of quasilinear
relaxation and the magnetic field inhomogeneity, allowing
one to obtain large scale solutions for both particle distribu-
tion function and wave spectral density, without going into
the details of the small scale quasilinear relaxation. We
should note that the method is similar to a bounce averaged
quasilinear diffusion approach [10], although the absence
of a large scale quasiperiodicity (absence of turning points)
in a divergent magnetic field dictates a completely differ-
ent treatment in this case of large scale inhomogeneity. We
have also outlined a method for numeric solution of the
large scale equations of quasilinear relaxation in a weakly
nonuniform medium. The method can be expanded to be
applicable to any problem of cyclotron wave-particle inter-
action in inhomogeneous plasma, including the solar wind
acceleration and heating. The numerical model shows a
new effect; the distribution function which is locally stable
shows secondary instability due to the collective input of
resonances and inhomogeneous streaming. This instability
will be investigated separately.
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