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A full mean-field solution of a quantum Heisenberg spin-glass model is presented in a large-N limit.
A spin-glass transition is found for all values of the spin S. The quantum critical regime associated
with the quantum transition at S � 0 and the various regimes in the spin-glass phase at high spin are
analyzed. The specific heat is shown to vanish linearly with temperature. In the spin-glass phase, intrigu-
ing connections between the equilibrium properties of the quantum problem and the out-of-equilibrium
dynamics of classical models are pointed out.

PACS numbers: 75.10.Nr, 64.60.Cn
The interplay between quantum effects and disorder in
spin glasses have been a subject of great recent interest [1].
On the experimental side, the strength of quantum fluctua-
tions can be continuously tuned by varying, e.g., an applied
transverse magnetic field [2]. Progress on the theoretical
side has followed two different routes. From the higher di-
mensional end, mean-field solutions and effective Landau
theories have been obtained [3,4] for quantum Ising and
rotor spin glasses, with a special focus on the vicinity of
the quantum-critical point where the glass transition tem-
perature is driven to zero. In low dimensions [5–7], it has
been shown that the low-T physics is controlled by rare
events (Griffiths-McCoy effects) at strong disorder fixed
points.

However, no established mean-field theory of the ex-
perimentally important case of quantum Heisenberg spin
glasses, with full SU�2� symmetry, is yet available. Unlike
the rotor/Ising models above, each site has nontrivial Berry
phases which impose the spin commutation relations, and
this is expected to place these models in a different uni-
versality class [8]. Bray and Moore [9] pioneered the
study of a model of Heisenberg spins on a fully connected
(Sherrington-Kirkpatrick) lattice of N sites. In this Let-
ter, we report a full solution of this model, both in the
paramagnetic and the glassy phase, when the spin sym-
metry group is extended from SU�2� to SU�N� and the
large-N limit is taken. The Hamiltonian is

H �
1

p
N N

X
i,j

Jij
�Si ? �Sj , (1)

where the Jij are independent, quenched random variables
with distribution: P�Jij� ~ e2J2

ij��2J2�. In an imaginary
time path-integral formalism, the model is mapped onto
a self-consistent single site problem with the action [8,9]

Seff � SB 1
J2

2N

Z b

0
dt dt0 Qab�t 2 t0� �Sa�t� ? �Sb�t0� ,

(2)

with b � 1�kBT , and the retarded interaction Qab�t 2

t0� obeys the self-consistency condition
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Qab�t 2 t0� � �1�N2� � �Sa�t� �Sb�t0��Seff . (3)

Here, a, b � 1, . . . , n denote the replica indices (the limit
n ! 0 has to be taken later), and SB is the Berry phase in
the spin coherent state path integral. For N � 2 the prob-
lem remains of considerable difficulty even in this mean-
field limit. In [9], as well as in most subsequent work
[10], the static approximation was used in which the t de-
pendence of Qab�t� is neglected; this may be appropriate
in some regimes but prevents a study of the quantum equi-
librium dynamics, in particular, in the quantum-critical
regime. This imaginary time dynamics has, however, been
studied recently in a Monte Carlo simulation with spin
S � 1�2 by Grempel and Rozenberg [11], but their study
was limited to the paramagnetic phase. In our large-N
limit, the problem is exactly solvable and, as explained be-
low, this limit provides a good description of the physics of
the N � 2 mean-field model, as far as the latter is known.
We find that in the paramagnetic phase, at low S (where
the quantum fluctuations are the strongest), the quantum-
critical regime is a gapless quantum paramagnet already
studied in [8,12] and radically different from the paramag-
net obtained in the classical regime (at large S), in which
a local moment behavior persists down to the glass transi-
tion. In the spin-glass phase, various regimes are obtained
as a function of temperature T . The thermodynamic prop-
erties and the dynamical response functions are analyzed
below. Most notably, the low-T specific heat is found to
have a linear T dependence, a behavior commonly ob-
served experimentally in spin glasses but not often realized
in mean-field classical models. Furthermore, the equi-
librium dynamics of the quantum case reveals intriguing
connections with some known features of the out-of equi-
librium dynamics of classical glassy models, an observa-
tion already made in [13] in a different context.

To handle the large-N limit, we use a Schwinger
boson representation of the SU�N� spin operators: Sab �
by

abb 2 Sdab, corresponding to fully symmetric repre-
sentations (one line of NS boxes in the language of Young
tableaux) where the number of bosons is constrained by
© 2000 The American Physical Society
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P
a by

aba � NS. In the SU�2� case, S coincides with the
usual definition of spin. Fermionic representations can
also be considered but they actually do not lead to a spin-
glass phase at any temperature in the N � ` limit [8]. In
the large-N limit, the self-consistent single-site problem
reduces to a nonlinear integral equation for the replicated
boson Green’s function: Gab�t� � 2

P
a�Tba

a�t� 3

byb
a �0���N [8]:

�G21�ab�inn� � inndab 1 ladab 2 Sab�inn� , (4)

Sab�t� � J2
≥
Gab�t�

¥2
Gab�2t� , (5)

Gaa�t � 02� � 2S . (6)

Here, nn are the bosonic Matsubara frequencies, and G21

stands for the inverse in replica space. The (disorder-
averaged) local spin correlation function is related to

Gab�t� by xloc�t� � � �Si�0� ? �Si�t�� � Gaa�t�Gaa�2t�.
The resulting phase diagram, obtained by both analytical
and numerical studies of these equations, is displayed in
Fig. 1, as a function of S and T�J. Spin-glass ordering
is found at any value of S. The critical temperature
increases as JS2 at large S (see below) and vanishes in the
limit S ! 0, as found earlier in [10]. The point S � 0,
T � 0 is the quantum critical point of this model. Several
crossovers are found within the spin-glass phase, which
will be described later.

We first describe the paramagnetic phase and the as-
sociated crossovers. In this phase, the Green’s function is
replica diagonal Gab�t� � G�t�dab and thus Eqs. (4)–(6)
reduce to a single nonlinear integral equation. We empha-
size that, as in any mean-field theory, paramagnetic solu-
tions of the mean-field equations can be found even below
the critical T where an instability to ordering occurs. At
high T , we have nearly free spins with an almost con-
stant correlation function xloc�t� � S�S 1 1� and a Curie
local susceptibility xloc �

Rb
0 xloc�t� dt � S�S 1 1��T .

FIG. 1. Mean-field phase diagram and crossovers of the
large-N quantum Heisenberg spin glass (the various regimes
are discussed in the text).
For large values of S, these solutions smoothly evolve, as
T is reduced, into solutions which still behave locally as
local moments, but with a Curie constant reduced by quan-
tum fluctuations: xloc � S2�T . This partial quenching
occurs at a temperature of order JS2 at large S, of the
same order but smaller than the glass transition tempera-
ture. These solutions actually have unphysical low-T prop-
erties, such as a divergent internal energy U � 2J2S4�2T
and a negative entropy (~ 2J2S4�4T2). These features
are well known in classical mean-field models and sim-
ply signal the tendency to spin-glass ordering. At smaller
values of S (Fig. 1), a crossover to a different kind of para-
magnetic solution is found below T � J , where we enter
the quantum-critical regime. In this gapless quantum para-
magnet (spin liquid), investigated previously in [8,12],
the local response displays a scaling form for v, T ø J ,
Jx

00
loc�v� ~ tanh�v�2T �, and the local susceptibility di-

verges only logarithmically Jxloc ~ ln�J�T �. In contrast
to the local-moment solutions, this paramagnet has finite
residual low-temperature entropy [14], so that the quench-
ing of the entropy as T is decreased takes place much
more gradually at low S, when quantum fluctuations are
strong, than at large S in the classical regime. It can be
shown analytically [14] that these solutions of the mean-
field equations exist down to T � 0 only for very low
values of S, smaller than Sc � 0.05. For larger spins, a
local-moment-like solution is retrieved as T is lowered
below a temperature of order JS2 (again below the actual
glass transition). However, the spin-liquid solutions are
the relevant ones in the quantum-critical regime at finite
temperature JS2 , T , J for an extended range of spin
values which extend up to S � 1. The detailed analysis of
the coexistence between these two kinds of paramagnetic
solutions at low S is rather intricate and will be presented
elsewhere [14].

In the quantum Monte Carlo results of [11] for the para-
magnetic phase of the S � 1�2, SU�2� model, the same
reduction of the Curie constant from S�S 1 1� to S2 was
observed. Furthermore, the relaxation function x 00�v��v

evolves from a single peak of width JS centered at v � 0
to a three peak structure in the low-T local moment regime.
The central peak of weight S2 corresponds to the resid-
ual local moment while two side peaks at an energy scale
J2S3�T correspond to transverse relaxation [11]. All these
features are captured by our solution in the large-N limit,
the only qualitative difference being that no thermal broad-
ening of the central peak is found in this limit. Furthermore
[15], numerical results not reported in [11] reveal that, in a
limited intermediate T range of the SU�2� S � 1�2 model,
spin liquid solutions similar to those found here in the
quantum-critical regime are observed. Although a logarith-
mic regime is not directly visible in the T dependence of
the local susceptibility because of this limited range, quan-
tum criticality is directly apparent in a nonmonotonic T
dependence of the local spin correlation function xloc�t�.

We now turn to the analysis of the spin-glass phase. We
first note that the spin-glass transition is not signaled by
841
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the divergence of the spin-glass susceptibility (which is
actually of order 1�N) [14,16]. In the ordered phase, the
boson Green’s function can be parametrized as follows:

Gab�t� � � eG�t� 2 g̃	dab 2 gab�1 2 dab� , (7)

where gab is a constant n 3 n matrix and g1 a constant,
fixed so that eG is regular at T � 0, i.e., eG�t ! `� � 0.
The usual spin-glass order parameter [17] is qab � g2

ab .
We have searched for replica-symmetric broken solutions
with a general Parisi ansatz for gab and found only single-
step replica symmetry breaking solutions (as in [10]). The
Parisi function g�x� associated with gab is thus piecewise
constant: g�x� � 0 for x , xc, g�x� � g�1� �

p
qEA �

g for x . xc, where qEA is the Edwards-Anderson order
parameter; this also implies that g̃ � g. For the following
discussion, it is convenient to define the parameter Q �
2J eG�in � 0��g. Using standard inversion formulas for a
Parisi matrix [18], the full set of mean-field equations read

� eG�inn�	21 � inn 2 Jg�Q 2 �eS�inn� 2 eS�0�	 , (8)

eS�t� � J2� eG2�t� eG�2t� 2 2g eG�t� eG�2t�

2 g eG2�t� 1 2g2 eG�t� 1 g2 eG�2t�	 , (9)

eG�t � 02� � g 2 S , (10)

bxc � �1�Q 2 Q��Jg2. (11)

However, these equations do not determine Q (or equiva-
lently the breakpoint xc) as also happens in a classical
spin-glass model with a single step of replica symmetry
breaking: there is a continuous family of solutions pa-
rametrized by Q, which has to be determined by indepen-
dent considerations. Two possibilities have appeared in
previous work: (i) Determine Q by minimizing the free
energy, as a function of Q, or (ii) impose a vanishing
lowest eigenvalue of the fluctuation matrix in the replica
space (the “replicon” mode). Criterion (i) is certainly the
natural one from the point of view of equilibrium ther-
modynamics. However, studies of out-of-equilibrium dy-
namics of classical spin glasses have revealed [19] that
these lowest free-energy solutions can never be reached
and that the system “freezes” at a dynamical temperature
Tc

sg, given precisely by the onset of solutions satisfying
the replicon criterion (ii). In our quantum problem, both
choices give sensible solutions, but with entirely differ-
ent spectra of equilibrium dynamical fluctuations: (i) leads
to a gap in x

00
loc�v�, while (ii) is found to be the unique

choice leading to a gapless spectrum. A similar observa-
tion was made in the work of Giamarchi and Le Doussal
[13] in their study of a one-dimensional quantum model
with disorder. In the present context, it seems natural
to expect local gapless modes in the ordered phase of a
quantum spin glass with continuous spin symmetry, and
these various considerations lead us to adopt (ii). Diago-
nalizing the fluctuation matrix in replica space, we veri-
fied stability and obtained the lowest eigenvalue e1 �
3bJ2g2�1 2 3Q2�. The replicon criterion thus leads to
Q � 1�

p
3. The same value is also selected by imposing
842
that eG has a gapless spectral weight. In contrast, crite-
rion (i) leads to 2 lnQ 1 1��4Q2� 1 1�2 2 3Q2�4 � 0,
or Q � 0.44 . . . , and a gapped solution, which is also
stable because e1 . 0. We also note that the previous com-
putation shows that the replica symmetric solution Q � 1
is unstable in the spin-glass phase. Moreover, it can be
shown that it leads to unphysical negative spectral weight
at large S. Hence, a correct description of the low-energy
excitations of the quantum model requires replica symme-
try breaking at any finite T in the spin-glass phase, al-
though the replica symmetry is restored at T � 0 where
xc � 0 [from (11)].

Once Q is determined, a full numerical solution of
the above equations can be performed. In particular, the
“equilibrium” spin-glass temperature T

eq
sg obtained from

criterion (i) is lower than the “dynamical” transition tem-
perature Tc

sg obtained from criterion (ii) (see Fig. 1): this
is not obvious a priori, but is certainly required in our
interpretation. Further analytical insight can be obtained
in the limit of large S. This limit can actually be taken
in two distinct ways, revealing two crossovers within the
spin-glass phase displayed in Fig. 1. If we take S ! `

while keeping T�JS2 fixed (i.e., staying close to the criti-
cal temperature), all nonzero Matsubara frequencies can
be neglected (the static approximation is accurate). In this
limit, we find, in particular, Tc

sg 
 2JS2�33�2. Alterna-
tively, keeping T̄ � T�JS and v̄ � v�JS fixed, we ac-
cess the “semiclassical” regime of the spin-glass phase.
In this limit, the Green’s function obeys a scaling formeG�v, T � � f�v̄���JS�, where f turns out to be indepen-
dent of T̄ and satisfies

f�v̄�21 � v̄ 2 1�Q 2 3Q 2 f�v̄� 2 f��2v̄� .
(12)

Eliminating f��2v̄� leads to a quartic equation for f�v̄�
on which all the above properties can be checked more
explicitly. A plot of the (gapless) relaxation function in the

FIG. 2. Relaxation function x 00�v��v in the large-S limit, ob-
tained from (12).
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FIG. 3. Specific heat C�T� and internal energy U�T � (inset) vs
temperature T , from a numerical solution of Eqs. (8)– (11) for
S � 5.

spin-glass phase x 00�v̄��v̄ obtained from (12) is displayed
in Fig. 2.

Finally, we briefly describe the thermodynamic proper-
ties, focusing on the T dependence of the specific heat.
Numerical results for this quantity for intermediate spin
are displayed on Fig. 3. They have been obtained from
the T derivative of the internal energy U � 2J2�2 3Rb

0 Gab�t�2Gab�2t�2 dt, where G is a numerical solution
of Eqs. (8)–(11). Furthermore, a large-S, low-T expan-
sion of U�T � can be done analytically and leads to [14]:
U�T � � U�0� 1 aST̄4 1 bT̄2 1 . . . where a and b are
positive numerical coefficients. Hence, in the quantum
regime defined by T , J

p
S (see Fig. 1), the specific heat

depends linearly on temperature. Moreover, this behavior
actually holds numerically for intermediate values of the
spin as displayed in Fig. 3.

Despite being formulated over two decades ago [9], a
complete understanding of the quantum Heisenberg spin
glass at the mean-field level has proven elusive. Here, we
have obtained a complete solution in a large-N limit, and
presented evidence that global aspects of the phase dia-
gram pertain also to the physical SU�N � 2� case. We
described crossovers in the vicinity of a quantum critical
point accessed by varying the spin S, but we can expect
that some features and intermediate temperature regimes
will survive when it is accessed by varying other parame-
ters in the Hamiltonian, including doping with metallic car-
riers as in Kondo lattice models [12,20]. We have also
described the T ! 0 thermodynamics and spectral func-
tions within the spin-glass phase, which is something not
previously analyzed in any mean-field quantum spin-glass
model: we found a specific heat linear in temperature, and
a dynamical susceptibility x 00�v��v ! const as v ! 0.
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Note added.—It has been recently proven by one of us
[21] that the behavior Jx

00
loc�v� ~ const found above in the

quantum critical regime also holds for SU�2�.
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