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Muon cooling is a critical component of the proposed muon collider and neutrino factory. Previous
studies of cooling channels have tracked single muons through the channel, which requires many particles
for good statistics and does not lend itself to an understanding of channel dynamics. In this paper, a
system of moment equations are derived which captures the major aspects of cooling: interactions with
material and acceleration by radio frequency (rf ) cavities. A general analysis of solenoid lattice types
compares well with prior simulations and indicates new directions for study.

PACS numbers: 41.85.Lc
There has been significant research over the past five
years on the feasibility of building a muon collider [1] and,
more recently, growing excitement over the possibility of
building a muon storage ring neutrino source [2,3]. Both of
these concepts envision an intense proton beam incident on
a target and producing pions, which then decay into muons.
The production of muons is expensive and a substantial
fraction of the initial six-dimensional muon phase space
must be captured. Unfortunately, the initial muon phase
space is orders of magnitude too large to be used in the
collider or storage ring. The six-dimensional phase space
volume must be reduced by a factor of order 100 before
it can be useful for the neutrino factory, and 106 for the
muon collider.

The cooling rates must be fast compared with the muon
decay time. This restriction eliminates microwave stochas-
tic cooling, used for antiprotons, and the heavy muon mass
precludes synchrotron radiation damping, used in e2e1

machines. Indeed, the heavy mass of the muon is pre-
cisely why it is an attractive candidate for a high-energy
collider: at 3 TeV, it can be bent in a circle with 7 km cir-
cumference and suffer insignificant radiation losses while,
as a lepton, all its energy is available in the center of mass.

The cooling method that is believed most promising is
ionization cooling [4], where particles are slowed down
by passing through material and then accelerated with ra-
dio frequency (rf) cavities. Inside the material, particles
lose momentum along their direction of motion, while the
acceleration is strictly in the longitudinal direction. The re-
sult is a reduction in transverse angle. Competing against
this transverse cooling are scattering events. The increase
in beam phase space due to scattering is minimized by en-
suring that the angular spread of velocities in the beam is as
large as possible; this corresponds to focusing the beam to
a small spot size. As the beam cools transversely, an unfa-
vorable variation of energy loss with energy d�dP�ds��dP
creates longitudinal heating. Eventually, particles can no
longer be accelerated by the rf, and begin to be lost.

The method proposed to overcome this problem is emit-
tance exchange, in which the six-dimensional phase space
is manipulated so that some longitudinal phase space is
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added to the transverse space. The now larger trans-
verse phase space can be reduced through ionization cool-
ing. While there are various suggestions for implementing
emittance exchange, none have been proven workable in
any realistic situation. Present designs for the neutrino fac-
tory do not require emittance exchange—the phase space
reduction of around 100 can be fully transverse. This pa-
per studies the dynamics of transverse cooling and is re-
stricted to azimuthally symmetric beams. Extensions to
include nonaxisymmetric channels are straightforward and
are likely to be needed for the study of emittance exchange
as well as of beam lines with bends and magnet errors.

We first consider single particle motion in vacuum
magnetic fields. The magnetic field inside of a cylin-
drically symmetric solenoid is �B � = 3 �Af�r , z�êf�.
For a paraxial theory, it is sufficient to approximate
Af � rB�z��2, where B�z� � Bz�r � 0, z�. The con-
stants of motion are P2 (or energy) and the canonical an-
gular momentum, Lcanon � xPy 2 yPx 1 qrAf, where
q is the charge. In a rotating coordinate frame (the Larmor
frame), with XR � x cosw 2 y sinw, YR � x sinw 1

y cosw, and

w0 �
qAf

Pzr
�

qB�z�
2Pz

� k , (1)

the linearized equations of motion reduce to X 00
R �

2k2XR and Y 00
R � 2k2YR; here, 0 indicates the derivative

along the z axis.
We can parametrize the solutions to the linearized

equations in terms of a “betatron function,” bp ,
and phase, F, by XR � A1

p
bp cos�F 2 F1� and

YR � A2
p

bp cos�F 2 F2�. The transverse amplitudes
A1 and A2 correspond to the Courant-Snyder invariants
[5]. The betatron function satisfies F0 � 1�bp , and bp

evolves as

2bpb00
p 2 �b0

p�2 1 4b2
pk2 2 4 � 0 . (2)

The angular momentum is, to lowest order,
Lcanon � PzA1A2 sin�F2 2 F1�. The forward momen-
tum is then determined by P2 � P2

z �1 1 �x0�2 1 � y0�2�.
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Now consider a cylindrically symmetric distribution
of particles in transverse phase space. Our goal is to
find a simple description of the rms properties of the
particle distribution. These are described by the matrix
M of the second-order transverse beam moments. For
simplicity, we neglect coupling between longitudinal and
transverse moments. The matrix M, which is also the
covariance matrix for the axis-centered beam, contains,
by symmetry, only four independent moments in x, Px ,
y, and Py , and
detM � ��x2	 �P2
x	 2 �xPx	2 2 �xPy	2�2. (3)

The transverse normalized rms emittance, eN , is defined as
detM � m4c4e

4
N . Because of the solenoid fields, M does

not decompose into orthogonal planes.
The net canonical angular momentum is represented by

a dimensionless parameter L through �Lcanon	 � �xPy 2

yPx 1 kr2Pz	 � 2mceNL . The remaining quantities are
characterized by the parameters a�, b�, and g�, in anal-
ogy with the Courant-Snyder formalism. The symmetric
moments matrix M is now written as
M
mceN

�

0
BBB@

b���Pz	
2a� �Pz	g�

0 b�k 2 L b���Pz	
L 2 b�k 0 2a� �Pz	g�

1
CCCA . (4)
Here, the average value of Pz is used, and we set k �
qB�z��2�Pz	. The definition of emittance combined with
Eq. (3) imposes the condition

g� �
1

b�

�1 1 a2
� 1 �b�k 2 L �2� . (5)

Starting from the deterministic single particle equations,
x0 � Px�Pz , y0 � Py�Pz , and

yz
d �P
dz

�
d �P
dt

� q� �E 1 �y 3 �B� 1 �y
dP
ds

, (6)

where dP�ds , 0 is the average change in momentum per
path length in material, the equations of evolution can be
found by interchanging the operations of averaging and dif-
ferentiation so that, for example, d�x2	�dz � �2xPx�Pz	.
Then, to incorporate the effect of multiple scatter, an addi-
tional term PzPS is added to the derivatives of �P2

x 	 and
�P2

y	; here, S � d�x02	�ds � �13.6 MeV�yP�2�LR , and
LR is the radiation length of the material, using a Gauss-
ian fit [6] to the Moliere theory for multiple scatter.

Assuming that correlations between longitudinal and
transverse quantities are weak (neglecting energy dis-
persion, for example), and considering in the transverse
magnetic field only Br ~ r , the evolution of the beam is
determined by

e0
N � b�

PS

2mc
1 eN

1
Pz

dP
ds

,

b0
� � 22a� 1 b�

q�Ez	
yzPz

2
b

2
�

eN

PS

2mc

2
mc
Pz

b�eN �b�k 2 L �
qB0

Pz
,

a0
� � 2g� 1 2k�b�k 2 L � 2

a�b�

eN

PS

2mc
,

(7)

L 0 � 2b�k
1

Pz

dP
ds

2
L b�

eN

PS

2mc
,

�Pz	0 �
q�Ez	

yz
1

dP
ds

2 mceN �b�k 2 L �
qB0

Pz
.

This set of equations allows for interactions with material
in addition to arbitrary changes in beam momentum. The
equation for emittance growth is not new [7], but the cou-
pled transport and cooling equations first appeared in [8].
A computer code for the evolution of moments based on
symbolic manipulation of the Vlasov equation has been
developed by Shadwick [9]. The formalism in this pa-
per differs mainly by the development of an extension of
the conventional beam dynamics parameters, which facili-
tates analytic study. In addition, analytic expressions for
the beam cooling rates in terms of material properties are
given in Ref. [10], for a fixed momentum beam in a lattice
with a given beta function.

In a vacuum with only magnetic fields, the beam
parameters evolve according to b

0
� � 22a� and

2b�b00
� 2 �b0

��2 1 4b2
�k2 2 4�1 1 L 2� � 0 . (8)

L and eN are constant, and g� is given by Eq. (5). Note
that b� � bp

p
1 1 L 2 relates the envelope beta function

to the single particle bp . Thus, canonical angular momen-
tum makes beams harder to focus. In previous treatments
[11], the envelope equation includes this contribution to
the beam spot size by defining an “effective” emittance re-
lated to angular momentum; however, this is not useful in
the context of ionization cooling, where only the uncor-
related spread of angles (i.e., true emittance) reduces the
effect of multiple scattering.

This theory enables a straightforward analysis of a wide
range of cooling channel geometries. It agrees well with a
thin lens approximation, which is analytically tractable but
not realistic for proposed muon cooling channels. Here,
we study a more realistic model with extended solenoids.
The field on axis is expanded in three Fourier harmonics
in the form B�z� � B1 sin�2pz�L� 1 B2 sin�4pz�L� 1

B3 sin�6pz�L�, where L is the periodicity of the magnetic
field. For a given momentum Pz and charge jqj � e, the
lattice is characterized by the relative sizes of B1, B2, and
B3, together with the quantity

x �
Bmax�T�L�m�
Pz �GeV�c�

� 6.67kmaxL , (9)
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FIG. 1. Analytic calculations of bmin�L (solid line) and
bmax�L (dashed line). The parameters for a proposed FOFO
cooling channel for a neutrino source is indicated.

where Bmax is the maximum amplitude of the magnetic
field on axis. The transport properties of channels without
acceleration or material can be described by the momen-
tum acceptance DP�P, defined as the minimum relative
momentum shift which will put the beam into unstable
transverse motion, and b��L.

We first consider the so-called FOFO (“focusing-
focusing”) lattice where the magnetic field on axis is a
simple sinusoid �B2 � B3 � 0�. The momentum accep-
tance of a FOFO channel has been examined in detail by
Fernow [12], starting from the equation for the beam size,
R ~

p
b, which in a vacuum with no electric fields is de-

termined by R00 1 k2R 2 m2c2e
2
N �1 1 L 2��R3P2

z � 0.
The unstable regions were found by neglecting the 1�R3

term, and looking for unbounded solutions of the resulting
Mathieu equation. These results agree with numerical
calculations of periodic solutions to Eq. (8). For the
FOFO lattice, all beams with x , 48.0 can be propagated
by the channel; this corresponds to all momenta above
some resonant value, at which the phase advance per half
period is 180 degrees. Immediately below this momen-
tum, particles undergo unstable motion in the transverse
direction; however, there are other momentum intervals
which support stable motion.

In addition to determining the momentum acceptance,
the envelope equations give detailed information about the
beta function. At low x , b��z� is roughly constant at
�9.4L�x; the focusing is determined by the average of
B2�z�. The minimum and maximum of the beta function,
which, respectively, determine the cooling potential of and
the aperture required for a given beam, are shown in Fig. 1
for x , 48.0; a rough numerical fit is

bmin
max

� L
9.4
x

∑
1 2

µ
x

48.0

∂2∏
61�2

. (10)

Close to resonance, this implies that the minimum beta
scales as bmin � 0.28L�DP�P�1�2, where DP�P � 1 2

�x�48.0�. Thus, although the minimum of the beta func-
tion can be reduced by taking the beam momentum closer
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FIG. 2. Phase diagrams for lattice behavior when a harmonic
is added to a sinusoidal magnetic field. The stability for a given
second (top) and third (bottom) Fourier component is indicated
as a function of x ~ 1�Pz . For the third harmonic, half-integer
tunes are indicated (dashed lines).

to resonance, the cost in terms of the reduction to the mo-
mentum acceptance is high. The maximum of the beta
function reaches its smallest value of �0.32L, at x � 34.
The technological difficulty in achieving a short periodic-
ity L limits the cooling performance of FOFO channels.

In Figure 2, “phase diagrams” delineating the bound-
aries between bounded and unbounded motion are shown
for the two sets of cases where B3 � 0 or B2 � 0. The
FOFO geometry corresponds to B2 � B3 � 0. Other pre-
viously described cooling channel configurations [13] are
analogous to various positions in the second interval of
stable motion. Note that for B2 � 0, B3�B1 � 0.5, the
first region of unstable motion becomes extremely small.

In the center of the second region of stability, the mini-
mum of the beta function typically scales as �DP�P�2

when the geometry of the lattice is altered. In contrast,
when the momentum is shifted closer to resonance, bmin ~

�DP�P�1�2, as in the case for the FOFO lattice. Thus, it
is most efficient to center the region of momentum accep-
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coils + --+
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FIG. 3. FOFO cooling lattice: diagram of coils, rf cavities,
liquid hydrogen (LH) chambers, and beam envelope.
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FIG. 4. FOFO cooling lattice: Transverse emittance from en-
velope equations (dashed line) compared with 1000 particle
ICOOL simulation with (thick line) and without (thin line) re-
alistic apertures.

tance about the target momentum, and to achieve small
bmin by varying the geometry.

Solutions to the moment equations yield good agree-
ment with single particle tracking codes, such as ICOOL

[14]. As an example, consider a FOFO cooling channel
using liquid hydrogen vessels that has been proposed for
a neutrino factory. The magnetic field period is 2.2 m,
the peak magnetic field on axis is 3.4 T, and the beam
momentum is 0.2 GeV�c. The geometry is indicated in
Fig. 3 and the transverse emittances from simulations are
shown in Fig. 4. There is close agreement between the
moment equations and simulation results, although in
the simulation which incorporates realistic apertures for
the beam line there is an initial sharp drop in emittance
due to beam scraping.

To illustrate the effect of canonical angular momentum,
we consider a 0.2 GeV�c beam propagating in a uniform
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FIG. 5. Predictions for cooling in a solenoid with field reversal
after 88 m, from envelope equations (dashed lines) and ICOOL
simulation (solid lines). Transverse emittance (thin lines) and
scaled canonical momentum (thick lines) are shown.
5 T solenoid. Liquid hydrogen vessels and rf are arranged
in a 1.1 m period lattice. After 88 meters, there is a sharp
field reversal into a 25 T solenoid. The resultant trans-
verse emittance and canonical momentum are shown in
Fig. 5. The results of an ICOOL particle simulation are
also shown. Without the field flip to reverse the buildup
of angular momentum, the beam emittance would saturate
at a significantly higher value.

A paraxial theory for beam moment equations in so-
lenoid fields has been developed, and applied towards
lattices designed for ionization cooling of muons. This the-
ory is similar in form to the Courant-Snyder formalism for
quadrupole focusing systems, and allows for a rapid analy-
sis of cooling channel performance, including the devel-
opment of scaling laws. These results are consistent with
particle tracking codes and require a small fraction of the
computational cost. Extensions of this theory to the full
six-dimensional phase space will allow treatment of beam
asymmetries, bending magnets, error analysis, nonlinear
fields, and space-charge effects.
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