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Temporally Harmonic Oscillons in Newtonian Fluids

H. Arbell and J. Fineberg

The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
(Received 18 January 2000; revised manuscript received 29 March 2000)

Stationary, highly localized (oscillon) structures are observed in a Newtonian fluid when nonlinear
surface waves are parametrically excited with two frequencies. Oscillons have a characteristic struc-
ture, that of periodically self-focusing jets. In contrast to previously observed oscillons in highly non-
Newtonian media, these states are temporally harmonic with the forcing. For wave amplitudes greater
than a critical value, they nucleate from an initial pattern via a hysteretic bifurcation, and can therefore
be localized on a background of patterns with a variety of different spatial symmetries.

PACS numbers: 47.54.+1, 05.45.Yv, 47.20.Gv, 47.35.+i

Highly localized structures have recently been observed
in a number of 2D uniformly driven nonlinear pattern-
forming systems. In contrast to states which are strongly
localized solely in the direction normal to the pattern’s
wave vector (see, e.g., Refs. [1-3]), oscillon states, which
are nearly stationary circular regions that oscillate between
conical peaks and craters, are strongly localized in all di-
rections, with no internal structure. Although these in-
triguing particlelike states have now been observed in two
distinct nonlinear systems [4,5], basic features such as their
localization mechanism [6—9], form, and generality are not
yet understood. Here we quantitatively describe highly lo-
calized states, appearing in a Newtonian fluid, whose form
is qualitatively similar to oscillons. The basic mechanism
for their formation is described.

Oscillons have been recently observed in both granu-
lar media [4] and colloidal suspensions [5] subjected to
a spatially uniform acceleration, g, sinwt, parallel to g.
With this excitation, the surface of both of these highly
non-Newtonian systems becomes unstable (the Faraday in-
stability) via a subcritical bifurcation to a standing wave
pattern with a subharmonic frequency, w/2. Oscillon
states are observed in the hysteretic region, where both
patterns and featureless “flat” states are bistable.

Oscillons have also been observed in a number of spa-
tially continuous models of subcritical systems. As in ex-
periments, Swift-Hohenberg equations [6,7], a complex
Ginzburg-Landau equation coupled to an auxiliary field
[8], and subcritical period-doubling maps with continuous
spatial coupling [9] have all yielded temporally subhar-
monic oscillons that appear solely in the bistable region of
phase space, where both patterns and featureless states can
be stable. Subharmonic temporal response, together with
bistability, was therefore assumed to be a necessary condi-
tion for oscillon formation [7]. Below, we will demonstrate
that temporally harmonic states similar in spatial structure
to previously observed oscillons can form well beyond the
bistable region of a pattern. Because of the marked simi-
larity of their form, we will also refer to these new states
as oscillons (or “harmonic oscillons” where possible am-
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biguity may arise). Harmonic oscillons can concurrently
coexist with either featureless or patterned states having
a variety of spatial symmetries. Oscillon dynamics influ-
ence the overall coherence of the underlying patterns and
may affect transitions between order and spatiotemporal
complexity. Their existence in Newtonian fluids may in-
dicate that oscillon formation is independent of any par-
ticular (e.g., shear-thinning) rheological property of their
support.

In the experiments described below, we generate
oscillons via spatially uniform vertical acceleration of a
Newtonian fluid layer of depth & with two commensurate
frequencies, w; = mwg and w; = nwy, where n > m
are mutually prime integers. In the forcing function,

gar = g:[cos(x) cos(mwot) + sin(x)cos(nwot + @)],
(1

the angle y describes the degree of mixing between modes
with critical wave numbers, and k; and k; correspond,
respectively, to w; and w;.

Our working fluids were Dow-Corning 200 silicone
oils with kinematic viscosities, v, of 8.7, 23, 47, 87 ¢S
(1 ¢S =102 cm?/s). Experiments were performed in
circular fluid layers of diameter 14.4 cm with 0.15 < h <
0.55 cm, where pattern correlation lengths [10] are typi-
cally much less than the system size. Oscillons were ob-
served using frequency combinations n : m = 3 : 2 and
5:4with10 < wo/(27) < 35 Hzand 10 < wo/Q27) <
20 Hz, respectively. The oscillon patterns generated were
both stable for —50° < ¢ << +50° and in three-frequency
forcing of 1:2:3 and 2:3:4. In experiments with frequency
combinations (in Hz), 50/25, 60/30, 80/40, 56/40,
63/45, 68/48, 70/50, 75/55, 77/55, 50/30, 70/40,
60/45, 65/50, 80/50, 68/52, 84/60, and 100/60 oscillon
states were not observed. The experimental system, con-
sisting of a computer-controlled electromagnetic shaker
and visualization system, was described in detail in [11].
Visualization of pattern and oscillon states was performed
both from above, using the gradient visualization scheme
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described in [11] and via direct visualization from the side
with shutter speeds of 0.1-1 ms, enabling measurement
of instantaneous amplitudes.

In Fig. 1a we present a typical time sequence of a single
oscillon, on the background of a flat underlying state.
Similar states had been previously noted in [12]. In con-
trast to previously observed subharmonic oscillons, the os-
cillon period, 27/ wq, is harmonic with the basic forcing
frequency. A typical phase space for a 3:2 forcing ratio is
shown in Fig. 1b. Oscillons typically appear near the bi-
critical point, where states corresponding to both w; and
w; are concurrently unstable. As described in [10,11,13]
square (hexagonal) patterns correspond to regions of phase
space dominated by response frequencies that are subhar-
monics (harmonics) of wg. Oscillons are formed only in
regions of phase space where the harmonic frequency is
dominant. On a subsequent change of either g, or y, how-
ever, they can persist in narrow regions on the subharmonic
side bicritical point as, for example, when coexisting with
squares (see Fig. 1).

Oscillons (Fig. 1c) can be surrounded by patterns having
a number of different symmetries. When surrounded by
squares, the oscillons and squares oscillate with respective
angular frequencies of w( and 3w/2. Oscillons (Fig. 1c,
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FIG. 1. (a) A time sequence of an oscillon observed at
wo/(2m) = 25 Hz, v = 47 ¢S, and h = 0.33 cm. The frames,
of width 1.6 cm, are 6.7 ms apart. (b) A typical phase diagram
[wo/27m) =30 Hz, h =02 cm, v = 23 cS]. Besides the
square, hexagon, SSS, and rhomboid states reported previously
[13], we observe oscillons (whose locations are indicated by
the dark arrows) that can coexist with the flat state [(c) left) at
v = 47 ¢S, wo/(27m) = 25 Hz, and h = 0.35 cm; square state
and hexagonal-based oscillon state [(c) center and (c) right]
at wg/(27) = 30 Hz and h = 0.2 cm. Filled (open) symbols
describe transition lines measured for fixed y and increasing
(decreasing) g.,. The hatched region is a transition region
between hexagonal and HBO patterns. All states were obtained
with a 3:2 forcing ratio and ¢ = 0°.

right) are also observed in a large area of phase space on
a background of a superlattice state formed by two super-
imposed hexagonal lattices (labeled hexagonal-based os-
cillons or HBO) with a relative orientation of 22° *= 2°,
In the center of each superhexagon a large amplitude os-
cillon is present while the nearest neighbors have smaller
amplitudes. This state is qualitatively similar to superlat-
tice I states observed in [14,15]. When surrounded by a
flat state, oscillons are metastable with typical lifetimes of
103 -10* oscillation periods. The amount of both hystere-
sis and lifetimes of the oscillon states increases with the
fluid viscosity.

Oscillons are readily discerned within many different
patterns such as the twelvefold quasipatterns formed in a
5:4 forcing ratio (Fig. 2b) and spatially subharmonic su-
perlattice (SSS) states (Fig. 2c). Although not easily ap-
parent from above, the high-amplitude characteristic form
of oscillons within these patterns is readily seen when the
state is viewed from the side. In contrast to the temporally
harmonic response of the oscillons when surrounded by
either the flat or hexagonal states, oscillons surrounded by
SSS states [11] echo the temporally subharmonic response
observed in these patterns. Spatially, this response is seen
as a lateral shift of the oscillons’ position every 277/ w.

Multifrequency oscillons can, as in [4,5], form bound
states such as the doublet and triplet shown in Fig. 2a. As
the fluid viscosity is increased there is more of a tendency
to form multioscillon bound states with a larger number
of components (Fig. 2d). This suggests that the attractive
force between oscillons increases with ». Within bound
states all of the component oscillons are in phase with one
another. In contrast to single-frequency oscillons where
larger structures are created with increased driving, two-
frequency oscillons on a flat background are destabilized
by an increase in the driving amplitude. When located
within a pattern, however, increased driving amplitude gen-
erally results in the creation of a larger number of oscillons
and, for high driving amplitudes, droplet ejection.

FIG. 2. Typical oscillons within a (a) flat state (v = 47 cS,
75/50 Hz); doublet and triplet (right) at # = 0.4 cm and a
triplet (left) at &~ = 0.33 cm. (b) Twelvefold quasipattern at
v = 47 ¢S, 75/60 Hz, h = 0.33 cm. (¢) An SSS pattern (v =
23 ¢S, 75/60 Hz, h = 0.2 cm). (d) A localized hexagonal os-
cillon structure (v = 87 ¢S, 60/40 Hz, h = 0.4 cm).
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An oscillon’s width and maximal amplitude scale dif-
ferently. The maximal amplitude scales roughly as 0.354,
where A is the wavelength of the underlying pattern. In
contrast, the oscillon width is nearly constant, decreasing
less than 30% for a factor of 3 change in A with only slight
dependence on both & and v. The surrounding ripples are
damped with a (v-dependent) (2—5)A radial extent.

Let us now consider the transition from a spatially
extended state to oscillons. In Figs. 3a—3d we plot the
(temporally harmonic) hexagonal pattern amplitude as a
function of the forcing g, cos y (corresponding to mwy)
for different fixed values of the second driving amplitude,
g.sin y (corresponding to nwg). The patterns first un-
dergo a hysteretic bifurcation from the flat state, with the
amount of hysteresis an increasing function of g, siny.
The pure hexagonal state can be empirically described by
an amplitude equation of the form

dA/dt = eA + BAY? — y]|A]PA, 2)

where B « g siny, € =(g,cosy — g;cosxl.)/
g.cos x|, is the reduced driving amplitude, with
g: cos x|, the hexagon threshold. The third order coeffi-
cient, y, is constant to within 20% as g, sin y is varied.
The hexagonal pattern, for all values of g, sin y, loses sta-
bility at the same critical value, H,., of the pattern ampli-
tude. H, « A, where A is the hexagon wavelength. H, =
0.17A forh = 0.2 cm, v = 23 ¢S, and 15 < wo/(27) <
35 Hz. These transition points, in the phase diagram,
typically lie along a straight line for 3:2 forcing [Figs. 3
(left) and 1b], a fact consistent with Eq. (2).

As indicated in Fig. 3, for low values of g, siny
oscillons are not seen. Nonhysteretic transitions at H,,
instead, occur to a hexagonal pattern marked by sporadic
high-amplitude defects. These defects, like the oscillon
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FIG. 3. (Right) The hexagonal pattern amplitude (filled

squares) (v = 23 ¢S, h = 0.2 cm, and 60/40 Hz forcing) as
a function of the reduced 40 Hz forcing amplitude, €, for
60 Hz forcing amplitudes, g siny, of (a) 0.54 g, (b) 1.56 g,
(c) 3.03 g, and (d) 3.18 g. At a critical amplitude of H, =
0.17A (dotted lines) a transition occurs to either oscillons [open
squares in (c) and (d)] or high-amplitude defect states [(a) and
(b)]. (Left) Phase space with the locations of H. (diamonds)
and measurement intervals corresponding to (a)—(d) noted.
Transitions to the primary instability (open circles), rhomboids
(squares), and HBO states (triangles) (see Fig. 1) are noted.
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states, initially form near the lateral boundaries. For
increased driving amplitudes, defects are not confined
to the boundaries and can nucleate throughout the entire
system. We surmise that the transition at H, corresponds
to a shape-changing instability of the underlying pattern.
Similar transitions from low- to high-amplitude states
with qualitatively different shapes have been observed in
suspended fluid drops (pendant drops) when either sinu-
soidally forced [16] or static [17]. Transitions leading to
droplet ejection at a critical wave amplitude proportional
to A also occur in both forced gravity and capillary waves
[18,19].

The transition to oscillons at H. elucidates a number of
their characteristics. A pattern can generate an oscillon
when any local amplitude becomes greater than H.. Thus,
as in Fig. 2, oscillon locations within a given pattern cor-
respond to the pattern’s local maxima. Thus a superlat-
tice state formed by two superimposed hexagonal lattices
with a relative orientation of 25° produces oscillon dou-
blets, while a relative orientation of 40° produces more
triplets. This also explains why the number of oscillons in-
creases with the driving amplitude (as the wave amplitude
surpasses H,. at more locations), while oscillon amplitudes
(Figs. 3c and 3d) stay relatively constant.

Figure 3 highlights an important feature of oscillons;
they bifurcate to a distinct branch above the patterns
that generate them. The region of bistability of the two
branches is a function of g, sin y. Depending on their
relative saddle node locations, oscillons can appear either
localized on a flat background (close to Fig. 3d) or can
decay to the hexagonal state (Fig. 3c). The pure hexagon
branch (Fig. 1b) is not observed near the bicritical point
because, as Eq. (2) indicates, for large g, sin y the grow-
ing transient hexagon amplitudes surpass H., generating
oscillons before steady-state hexagons are reached.

What mechanism leads to oscillon formation? A neces-
sary condition for oscillon formation is that a pattern arrive
at the critical wave amplitude, H., where an instability oc-
curs to either large amplitude defects or oscillons. Large
amplitude defects differ from oscillons as they are transient
with lifetimes (of order 7/wy) and peak amplitudes, both
significantly lower than oscillons and about 20%—60%
higher than the surrounding waves. We now present evi-
dence that the oscillons described here are essentially local
jets, similar to jets formed by inertial collapse of axisym-
metrically displaced fluid as in [20,21]. A falling drop, or,
in our case, a high amplitude wave accelerating into the
fluid, creates a craterlike deformation upon impact with
the fluid surface. Under the action of gravity (or positive
acceleration of the plate) the crater then collapses radially
inward. This focuses kinetic energy and creates a high-
energy jet along the crater axis. Zeff et al. [20] have shown
that this occurs in deep fluids when parametrically forced
surface waves, upon reaching a critical amplitude, collapse
to a finite-time singularity of both the energy density and
the velocity field along the axis. Similar phenomena oc-
cur when fluid drops fall from above a critical height [21]
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FIG. 4. (Right) Images of representative temporal phases of
two typical oscillons (at 60/40 Hz driving) within a hexagonal
pattern. As the crater phase (a) collapses, thin jets are formed
(b),(c) which then develop into thick jets (d). (left) The peak
amplitude of an oscillon (squares) as a function of time over a
single excitation period, 277/ wo, compared to the total acceler-
ation, a = —(g + gg,) (solid line). Amplitudes noted by the
dotted line were hidden by the cell’s lateral boundary and are
approximate.

into a fluid. When the fluid is shallow, interaction with the
lower boundary [22] leads to thick jets, similar in form to
oscillons.

The detailed dynamics of oscillons support this idea.
Photographs (Figs. 4a—4d) of representative temporal
phases of two oscillons within a hexagonal pattern show
that as a well-defined crater phase (Fig. 4a) collapses thin
jets are first formed (Fig. 4b) that then develop into the
thick jets that we recognize as oscillons. Comparison of
an oscillon peak with the instantaneous driving acceler-
ation [Fig. 4 (left)] supports this picture. Oscillon time
dependence is asymmetric, with growth much more rapid
(20%—-30% of a period) than decay. Significantly, rapid
growth occurs well before positive total acceleration,
a = —(g + gg-), with the first measurable velocities
significantly (50%-80%) higher than both the surface
wave group velocity and maximum plate velocity. These
effects suggest crater collapse.

Figure 4 shows the oscillon to be efficiently pumped by
the system. A local maximum of the plate acceleration at
an oscillon’s peak (i.e., maximum effective gravitational
potential) and maximal relative velocity when the oscillon
and fluid surface merge (at A = 0 in Fig. 4) yield efficient
crater formation. Optimal inertial collapse of the crater
rim is achieved by maximal plate acceleration (point a
in Fig. 4) at the crater phase. Optimal pumping cannot
always be achieved, as the oscillon growth rate provides
an intrinsic time scale. This may explain why oscillon
states are not observed for all values of ¢ or n : m, which
govern the form of the driving function.

In conclusion, oscillon states whose time dependence is
temporally harmonic with the forcing frequency can exist
in Newtonian fluids. Unlike previously observed oscillon
states, they do not solely appear in a region of bistability of

two global states, but rather bifurcate subcritically from a
pattern at critical wave amplitude to a distinct branch. This
bifurcation can lead to either transient high-amplitude de-
fects that sporadically form throughout the pattern or, for
higher wave amplitudes, to oscillons. Harmonic oscillons
are periodically self-focusing jets that can be localized
within states with a variety of different spatial symme-
tries. As the structure of previously observed oscillons is
also qualitatively similar to these jets, we surmise that they
may be generated by a similar mechanism. In contrast to
other suggested localization mechanisms [7], this model
may explain the selection of oscillons’ highly localized,
characteristic shape.
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