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Dynamics of Localized Structures in Vectorial Waves
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Dynamical properties of topological defects in a two dimensional complex vector field are considered.
These objects naturally arise in the study of polarized transverse light waves. Dynamics is modeled
by a vector complex Ginzburg-Landau equation with parameter values appropriate for linearly polarized
laser emission. Creation and annihilation processes, and self-organization of defects in lattice structures,
are described. We find “glassy" configurations dominated by vectorial defects and a melting process
associated with topological-charge unbinding.
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A variety of nonlinearly evolving fields display states
consisting of distinct localized objects with some kind of
particlelike behavior. Examples are vortices in fluids, su-
perfluids and superconductors, solitary waves in chemi-
cal media, and oscillons in granular layers, among others
[1]. These localized structures often organize the geom-
etry and the dynamics of the host medium, so that they
become “building blocks” of regular patterns and of spa-
tiotemporal chaos [2,3]. In this situation, an understand-
ing of complex evolving configurations can be achieved
in terms of the interaction rules of the particlelike entities.
An important class of localized objects is defects that ap-
pear as a consequence of spontaneous symmetry breaking
in the surrounding medium. These objects carry topologi-
cal properties which endorse them with a characteristic sta-
bility and robustness. Its presence is ubiquitous both in and
out of equilibrium and often mediates nonequilibrium dy-
namical processes.

Optical cavities containing nonlinear optical materials
have been specially prolific in providing examples of lo-
calized structures [4]. They can take the form of vortices
or bright or dark dissipative spatial solitons. The ability
of “writing,” “erasing,” and moving around these local-
ized light spots opens promising ways of achieving parallel
information processing. There is, however, an important
property of light that is just becoming to be appreciated
in this context: the vector nature of the electromagnetic
field. Sometimes, the polarization degree of freedom is
fixed by material anisotropies or by experimental arrange-
ments. But, when free to manifest, it leads to striking topo-
logical phenomena [5].

A classification of topological singularities in electro-
magnetic fields propagating paraxially in linear media can
be found in [6]. Nonlinear generation and propagation,
as occurring in lasers, favors particular polarization states
(circular or linear, for instance) which should be taken
as the relevant background states on which topological
defects may appear in nonlinear systems. Classification of
topological defects on such vector nonlinear backgrounds
was established in [7], improving on earlier work [8].
While in particular limits some information on isolated
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defects may be obtained analytically [7], there is a lack
of understanding about complex dynamic states. Here we
explore these states for general nonconservative and non-
relaxational dynamics. We study which kinds of defects
spontaneously emerge and describe their stability, self-
organization, and annihilation. Transitions between
different spatiotemporal regimes, mediated by defect-
behavior changes, are found: A “vectorial defect” can
entrain the whole system and dominate “frozen” configu-
rations whereas topological-charge unbinding leads to the
melting of this frozen phase into a new dynamical regime.

Our study is made in the context of a spatially two di-
mensional model appropriate for laser emission from wide-
aperture resonators, the vector complex Ginzburg-Landau
equation (VCGLE) [9]. The VCGLE can describe also, in
appropriate ranges of parameters, other kinds of systems
such as two-component Bose condensates [10] and coun-
terpropagating waves in nonlinear media [11]. In general,
the VCGLE describes the complex envelope of any oscil-
lating vector field close enough to a homogeneous Hopf
bifurcation, which leads to a variety of complex spatiotem-
poral phenomena. Through this Letter, however, we will
restrict the study to parameter ranges of interest in optics.

The VCGLE can be written as

≠tA6 � A6 1 �1 1 ia�=2A6

2 �1 1 ib� �jA6j
2 1 gjA7j

2�A6 . (1)

A6 are the two components of the vector complex field. In
optics they are identified with the right and left circularly
polarized components of the transverse field. Other forms
of this equation can be written [8] in terms of the Cartesian
components �Ax , Ay�, which are related to the circular ones
by Ax � �A1 1 A2��

p
2 and Ay � �A1 2 A2��i

p
2.

When interpreted as a set of two coupled fields the
model gives the opportunity to explore synchronization
of spatiotemporal chaos [3,12]. The real parameters a

and b are associated with the strength of nondissipa-
tive spatial coupling (optical diffraction) and nonlinear
frequency shift (optical detuning), respectively. As for
laser systems the condition 1 1 ab . 0 is always
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satisfied [9]; we will consider only this case. This corre-
sponds to the Benjamin-Feir stable range, where there are
stable plane-wave solutions of Eq. (1). The parameter g (a
real number in lasers) represents the coupling between the
polarization components. We consider a weak coupling
situation (g , 1) so that stable uniform solutions satisfy
jA1j � jA2j. This corresponds to a laser emitting linearly
polarized light.

For g � 0 Eq. (1) becomes a pair of independent scalar
complex Ginzburg-Landau equations (CGLE). A localized
structure which appears in characteristic configurations of
the two dimensional CGLE [13] is a topological defect:
a “vortex” where the amplitude is exactly zero and thus
the phase of the field is not defined. In the regime where
plane waves are stable, a spiral wave develops around the
defect. It behaves asymptotically as a traveling wave (TW)
of a particular wave number dynamically selected by the
defect [14].

When g fi 0 the two components A1 and A2 become
coupled and we have genuine vector effects. The classi-
fication of defects of the vector field in [7] was elabo-
rated in terms of the Cartesian components of the field
(Ax , Ay), but it is better for our purposes to recast it in
terms of the circular components A6 � jA6jeif6 : Eq. (1)
admits a continuous family of TW solutions for A1 and
A2 which are the obvious generalizations to d � 2 of the
one dimensional solutions described in [9]. Defects ap-
pear when different solutions of this family are selected in
different regions of the space. The different solutions can
be matched continuously except at one point, the defect,
where the field has to take a value outside the family. In
our case localized zeros in jA6j are defects. Two topo-
logical charges n6 associated with each defect are defined
by 2pn6 �

H
d �r ? �=f6, where the integral is around a

closed path encircling the defect. We find the following
defects in our dynamical system: A vectorial defect is a
zero in both components of the field at the same point. It
is of the argument type when n1 � n2. The background
solutions matched around it are TW with the same wave
vector for A6. A simple ansatz for this solution reveals
that it selects asymptotically the same wave number as for
g � 0. If n1 � 2n2 the vectorial defect is of the director
type and the background solutions are TW for A6, again
with the same asymptotic wave number, but with differ-
ent wave vector orientation. Finally, we call scalar defect
a zero in just one of the two circular field components.
The background solutions are TW. The wave number in
the component containing the zero decreases with g, being
the one in the other component always vanishing. Numer-
ically, we do not find defects with jn6j . 1. A variety of
defect interaction processes are possible which respect the
necessary requirement of topological-charge conservation.
We now describe some of these processes that occur in our
dynamical model.

We first consider [15] the spontaneous formation of
defects starting from random initial conditions around
the unstable solution A1 � A2 � 0. For short times the
dynamics creates a high density of scalar defects. Those
of opposite charge in the same component of the field may
collide and annihilate in pairs during this transient. At a
later stage, and for g not too large, vectorial defects are
formed due to the coalescence of two scalar defects, be-
longing to different field components, which form a bound
structure. This later stage is reached later as g becomes
smaller. Of course, for g � 0 the lack of coupling be-
tween the components precludes the formation of vectorial
defects. Close to the potential limit a � b [16] (which
includes the real-coefficient case a � b � 0) they are
neither formed. The appearance of vectorial defects has a
strong influence on the dynamics: spiral waves develop
around the core in each component which immediately
expel out all the scalar defects. Thus the vectorial defects
become the organizing centers of the final field configura-
tions (see Fig. 1). The rotation sense of the spiral in each
component is determined by the sign of the corresponding
topological charge (see figure caption). The long-time
configurations are characterized by a structure of cellular
domains with nearly constant modulus separated by shocks
between the waves. These “frozen” or “glassy” configu-
rations with an extremely slow evolution of the
modulus of the field components look similar to
configurations found in the scalar CGLE. However, these
configurations arise here from the dynamical dominance
of the vectorial defects, behaving toward the scalar
ones more passively. In the scalar CGLE the difference
between the dominant defects and the ones at the domain
borders seems to arise from spontaneous amplification
of inhomogeneities [17,18]. Here no vectorial defect is

FIG. 1. Long-time field configurations for g � 0.1, a � 0.2,
and b � 2. (a) jA1j

2, (b) jA2j
2, (c) f1, and (d) f2. In (c) and

(d), the upper-left and lower-right spirals have the same sense,
thus identifying its core as an argument defect; the other spirals
wind in opposite senses (director defects).
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found at the domain borders. The polarization state in
the domain around an argument defect is one of constant
linear polarization, with direction determined by the phase
difference between the spirals. The state around a director
defect is also linearly polarized, but with polarization
direction rotating around the defect core. Scalar defects
do not present a developed spiral wave around them in
the situation just described, although it may appear in
the charged component when initial conditions producing
well-separated scalar defects are used. Its core is circularly
polarized.

The frozen configurations occur for relatively small g.
Increasing g vectorial defects become unstable and they
are destroyed leading to a “melting” of the glass phase.
We have identified two destruction mechanisms: (i) back-
ground instability: one of the two charges forming a vec-
torial defect is annihilated by an external scalar defect; as a
result a free scalar defect is left in the other component of
the field and (ii) core instability: the vectorial defect splits
in two scalar defects.

The region in parameter space a-b where process (i) is
observed corresponds approximately to the region where
for the scalar CGLE the phase spirals are convectively un-
stable [19]. The spirals remain in place and look stable
because perturbations are effectively ejected away because
of the group velocity on the spiral wave. As g is increased
from zero the stability of the spirals is modified: At a
given value of g, the group velocity is not strong enough
to overwhelm the growth of the perturbations, the spirals
becoming absolutely unstable. At this point the domains
around the vectorial defects are uneffective as exclusion
zones, so that scalar defects previously confined to the do-
main border can approach the vectorial defect core (Fig. 2).
This allows for mechanism (i) to take place. Although this
picture is valid for both kinds of vectorial defects, director
defects survive for larger g than argument ones. For the
parameter values of Fig. 1, argument defects become un-
stable at g � 0.3, while director defects remain stable up
to g � 0.35. For larger g only scalar defects are found
numerically. The different stability range of argument and
director defects can be understood through a linear stabil-
ity analysis of the vector spirals focusing in its far-field

FIG. 2. Annihilation of a director defect (g � 0.35, a � 0.2,
b � 2). Upper row: jA1j

2, lower row: jA2j
2. From left

to right: t � 90, 190, 270, 290. The initial condition was the
configuration of Fig. 1. Only a part of the simulation domain is
shown.
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plane-wave structure. An extension of the d � 1 analysis
[9] indicates that as g is increased polarization phase in-
stabilities are such that corotating spirals (the background
solutions for argument defects) become convectively un-
stable before counterrotating spirals associated with direc-
tor defects. The calculation of the absolute instability limit
is quite involved, but the result for the convective instabil-
ity suggests that corotating spirals become absolutely un-
stable before counterrotating ones.

Process (ii) is roughly present in the region of param-
eter space a-b where the spirals are stable in the scalar
case. The splitting of a director defect is shown in Fig. 3.
The size of the vectorial defect core is much smaller than
the size of the core of the two scalar defects that remain
at the end of the process. Also in this case argument de-
fects become unstable for smaller g than director defects.
For example, for the parameter values of Fig. 3 argument
defects already split for g � 0.75. The splitting mecha-
nism has been previously described in Ref. [7] for the
real-coefficient case (a � b � 0), where a greater sym-
metry between director and argument defects seems to be
present. More in general, approaching the line a � b, we
observe numerically that director and argument defects of
initial configurations such as the one in Fig. 1 split spon-
taneously, even for very small values of g.

For g high enough, the vectorial defects always dis-
appear following one of the two mechanisms described
above. The system then presents a faster disordered
dynamics (a kind of gaslike phase) dominated by the
scalar defects, which are conserved in number during very
long times. A typical snapshot is shown in Fig. 4. At
the defect core one of the components vanishes, and the
modulus of the other has a local maximum. Thus the
localized objects are circularly polarized and impose some
elliptic polarization to their neighborhood. The spiral
wavelength around scalar defects increases with g, so
that well-developed spirals do not fit in the domains for g

close to one. Domains are thus less effective as exclusion
zones and defects more mobile. The vortex unbinding
transition between the glassy and the gaslike phases can
be described quantitatively in terms of entropy and mutual
information measures [12,20].

FIG. 3. Splitting of a director defect (a � 0.7, b � 2, g �
0.95). Upper row: jA1j

2; lower row: jA2j
2. From left to right:

t � 50, 100, 150, 200. The initial state formed spontaneously
under g � 0.9.
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FIG. 4. An evolving gaslike state, dominated by scalar defects
(a � 0.2, b � 2, g � 0.8). Left: jA1j

2; right: jA2j
2.

We finally discuss the emergence of self-organized or-
dered structures of defects. In the dynamics leading to con-
figurations as the one in Fig. 1 there are cases, particularly
for small g, in which only one or a few vectorial defects are
formed. They immediately push the scalar defects out of
the limits of their large domains, so that a large number of
scalar defects are compressed in a limited region of space.
In this situation the “gas” of scalar defects “crystallizes”
forming a stable square lattice with alternating positive and
negative charges as in an ionic crystal (see Fig. 5). The lat-
tice in one of the components fills the interstitials of the
other. Once the lattice is formed, the vectorial character
of the field is no longer required to keep the lattice stable.
In fact, crystalline aggregation of defects was previously
observed in the scalar CGLE in special situations (when
a is close to b; see [17]). In that case, however, very
special initial conditions are needed to obtain the lattice,
whereas here the vectorial defect creates a large exclusion
island which compresses the scalar defects and leads to the
spontaneous condensation, in rather general conditions, of
a highly dense crystal.

In summary, we have described phenomena associated
with defect dynamics in vector nonlinear media. Crystal-,
gas-, and glasslike phases are found with transitions be-
tween them mediated by processes in which the vector na-
ture of the field and the defects plays an important role.
Optical active media are the natural systems in which to
search for experimental realizations of these phenomena.
In addition to applications to information storage and pro-

FIG. 5. Crystal of defects, compressed by the vectorial defect
in the lower-right corner (a � 0.2, b � 2, g � 0.01). Con-
densation occurred spontaneously starting from random initial
conditions. Left: jA1j

2; right: f1.
cessing, the particlelike objects studied here present spatial
localization of both light intensity and optical polarization.
This makes them very interesting from the point of view
of applications leading to atom trapping and cooling.
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